Importance of probiotic encapsulation: ionic gelation and complex coacervation as promising techniques for food use
The intestinal microflora has living microorganisms that promote the well-being and health of the intestine and indirectly of different systems of the body. When probiotic microorganisms are supplied in the correct dose and in an adequate manner, they contribute to the reduction of acquiring certain diseases; Probiotics have numerous properties that affect the microflora of the body, resulting in benefits mainly for intestinal health and the immune system, which can be supplied by nutraceutical products or functional foods. However, there are limitations in their use because they are sensitive under adverse environmental conditions, they degrade in food matrices under acidic conditions of the gastrointestinal tract, where they must exert their mechanism of action to generate beneficial effects on the health of the host. Therefore, it is important to implement strategies that provide protection to probiotics against unfavorable conditions, to significantly maintain viability during processing and in the digestive system. There are various encapsulation techniques, including ionic gelation and complex coacervation, both methods with great benefits for the protection of probiotic microorganisms and broad advantages for application in different food matrices; These techniques are made with non-toxic, natural materials approved for human consumption. This review aims to present important aspects of probiotic microorganisms in the food industry and the need for protective barriers, focusing mainly on encapsulation techniques by ionic gelation and complex coacervation.
Main Authors: | , , |
---|---|
Format: | Digital revista |
Language: | spa |
Published: |
Universidad del Cauca -Facultad de ciencias Agrarias
2023
|
Online Access: | https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/2223 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
rev-bsaa-co-article-2223 |
---|---|
record_format |
ojs |
institution |
UNICAUCA CO |
collection |
OJS |
country |
Colombia |
countrycode |
CO |
component |
Revista |
access |
En linea |
databasecode |
rev-bsaa-co |
tag |
revista |
region |
America del Sur |
libraryname |
Biblioteca de la UNICAUCA de Colombia |
language |
spa |
format |
Digital |
author |
Mosquera Vivas, Esmeralda Ayala Aponte, Alfredo Serna Cock, Liliana |
spellingShingle |
Mosquera Vivas, Esmeralda Ayala Aponte, Alfredo Serna Cock, Liliana Importance of probiotic encapsulation: ionic gelation and complex coacervation as promising techniques for food use |
author_facet |
Mosquera Vivas, Esmeralda Ayala Aponte, Alfredo Serna Cock, Liliana |
author_sort |
Mosquera Vivas, Esmeralda |
title |
Importance of probiotic encapsulation: ionic gelation and complex coacervation as promising techniques for food use |
title_short |
Importance of probiotic encapsulation: ionic gelation and complex coacervation as promising techniques for food use |
title_full |
Importance of probiotic encapsulation: ionic gelation and complex coacervation as promising techniques for food use |
title_fullStr |
Importance of probiotic encapsulation: ionic gelation and complex coacervation as promising techniques for food use |
title_full_unstemmed |
Importance of probiotic encapsulation: ionic gelation and complex coacervation as promising techniques for food use |
title_sort |
importance of probiotic encapsulation: ionic gelation and complex coacervation as promising techniques for food use |
description |
The intestinal microflora has living microorganisms that promote the well-being and health of the intestine and indirectly of different systems of the body. When probiotic microorganisms are supplied in the correct dose and in an adequate manner, they contribute to the reduction of acquiring certain diseases; Probiotics have numerous properties that affect the microflora of the body, resulting in benefits mainly for intestinal health and the immune system, which can be supplied by nutraceutical products or functional foods. However, there are limitations in their use because they are sensitive under adverse environmental conditions, they degrade in food matrices under acidic conditions of the gastrointestinal tract, where they must exert their mechanism of action to generate beneficial effects on the health of the host. Therefore, it is important to implement strategies that provide protection to probiotics against unfavorable conditions, to significantly maintain viability during processing and in the digestive system. There are various encapsulation techniques, including ionic gelation and complex coacervation, both methods with great benefits for the protection of probiotic microorganisms and broad advantages for application in different food matrices; These techniques are made with non-toxic, natural materials approved for human consumption. This review aims to present important aspects of probiotic microorganisms in the food industry and the need for protective barriers, focusing mainly on encapsulation techniques by ionic gelation and complex coacervation. |
publisher |
Universidad del Cauca -Facultad de ciencias Agrarias |
publishDate |
2023 |
url |
https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/2223 |
work_keys_str_mv |
AT mosqueravivasesmeralda importanceofprobioticencapsulationionicgelationandcomplexcoacervationaspromisingtechniquesforfooduse AT ayalaapontealfredo importanceofprobioticencapsulationionicgelationandcomplexcoacervationaspromisingtechniquesforfooduse AT sernacockliliana importanceofprobioticencapsulationionicgelationandcomplexcoacervationaspromisingtechniquesforfooduse AT mosqueravivasesmeralda importanciadelaencapsulaciondeprobioticosgelificacionionicaycoacervacioncomplejacomotecnicasprometedorasparausoalimentario AT ayalaapontealfredo importanciadelaencapsulaciondeprobioticosgelificacionionicaycoacervacioncomplejacomotecnicasprometedorasparausoalimentario AT sernacockliliana importanciadelaencapsulaciondeprobioticosgelificacionionicaycoacervacioncomplejacomotecnicasprometedorasparausoalimentario |
_version_ |
1813451483033632768 |
spelling |
rev-bsaa-co-article-22232024-09-10T17:44:42Z Importance of probiotic encapsulation: ionic gelation and complex coacervation as promising techniques for food use Importancia de la encapsulación de probióticos: gelificación iónica y coacervación compleja como técnicas prometedoras para uso alimentario Mosquera Vivas, Esmeralda Ayala Aponte, Alfredo Serna Cock, Liliana Probióticos Lactobacillus Encapsulación Gelificación iónica Coacervación compleja Alimentos funcionales Sistema digestivo Viabilidad Sistema inmunológico Beneficio para la salud Probiotics Lactobacillus Encapsulation Ionic gelation Complex coacervation Functional Foods Digestive system Viability Immune system Health benefit The intestinal microflora has living microorganisms that promote the well-being and health of the intestine and indirectly of different systems of the body. When probiotic microorganisms are supplied in the correct dose and in an adequate manner, they contribute to the reduction of acquiring certain diseases; Probiotics have numerous properties that affect the microflora of the body, resulting in benefits mainly for intestinal health and the immune system, which can be supplied by nutraceutical products or functional foods. However, there are limitations in their use because they are sensitive under adverse environmental conditions, they degrade in food matrices under acidic conditions of the gastrointestinal tract, where they must exert their mechanism of action to generate beneficial effects on the health of the host. Therefore, it is important to implement strategies that provide protection to probiotics against unfavorable conditions, to significantly maintain viability during processing and in the digestive system. There are various encapsulation techniques, including ionic gelation and complex coacervation, both methods with great benefits for the protection of probiotic microorganisms and broad advantages for application in different food matrices; These techniques are made with non-toxic, natural materials approved for human consumption. This review aims to present important aspects of probiotic microorganisms in the food industry and the need for protective barriers, focusing mainly on encapsulation techniques by ionic gelation and complex coacervation. La microflora intestinal cuenta con microorganismos vivos que promueven el bienestar y la salud del intestino y de manera indirecta de diferentes sistemas del cuerpo. Cuando se suministran microorganismos probióticos en dosis correcta y de manera adecuada, estos contribuyen a la disminución de adquirir ciertas enfermedades; los probióticos cuentan con numerosas propiedades que inciden sobre la microflora del organismo resultando beneficiosos principalmente en la salud intestinal y en el sistema inmunológico, que pueden ser suministrados por productos nutraceúticos o por alimentos funcionales. Sin embargo, existen limitaciones en su uso debido a que son sensibles bajo condiciones adversas del entorno, se degradan en matrices alimentarias en condiciones ácidas del tracto gastrointestinal, lugar donde deben ejercer su mecanismo de acción para generar los efectos benéficos en la salud del hospedero. Por lo tanto, es importante la implementación de estrategias que brinden protección a los probióticos frente a condiciones no favorables, para mantener significativamente la viabilidad durante el procesamiento y en el sistema digestivo. Existen diversas técnicas de encapsulación, entre ellas la gelificación iónica y la coacervación compleja, ambos métodos con grandes bondades para la protección de microorganismos probióticos y amplias ventajas para la aplicación en diferentes matrices alimentarias; estas técnicasse realizan con materiales no tóxicos, naturales y aprobados para el consumo humano. La presente revisión tiene por objetivo presentar aspectos importantes sobre los microorganismos probióticos en la industria de alimentos, en la salud, y la necesidad de las barreras de protección con enfoque principalmente en el método de gelificación iónica y coacervación compleja como técnicas emergentes de encapsulación. Universidad del Cauca -Facultad de ciencias Agrarias 2023-06-21 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/2223 10.18684/rbsaa.v22.n1.2024.2223 Biotechnology in the Agricultural and Agroindustrial Sector; Vol. 22 No. 1 (2024): January to June; 105-123 Biotecnología en el Sector Agropecuario y Agroindustrial; Vol. 22 Núm. 1 (2024): Enero a Junio; 105-123 1909-9959 1692-3561 spa https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/2223/1881 /*ref*/ADILAH, RUSYDA-NUR; CHIU, SHIEH-TSUNG; HU, SHAO-YANG; BALLANTYNE, ROLISSA; HAPPY, NURSYAM; CHENG, ANN-CHANG; LIU, CHUN-HUNG. Improvement in the probiotic efficacy of Bacillus subtilis E20-stimulates growth and health status of white shrimp, Litopenaeus vannamei via encapsulation in alginate and coated with chitosan. Fish and Shellfish Immunology, v. 125, 2022, p. 74-83.https://doi.org/10.1016/j.fsi.2022.05.002 /*ref*/AFZAAL, MUHAMMAD; SAEED, FARHAN; AHMAD, AWAIS; TUFAIL, TABUSSAM; ATEEQ, HUDA; AHMED, AFTAB; ISMAIL, ZORIA; MUHAMMAD, FAQIR. Encapsulation of Bifidobacterium bifidum by internal gelation method to access the viability in cheddar cheese and under simulated gastrointestinal conditions. Food Science and Nutrition, v. 8, n. 6, 2020, p. 2739-2747.https://doi.org/10.1002/fsn3.1562 /*ref*/ALKHATIB, HAMZEH; DOOLAANEA, ABD-ALMONEM; ASSADPOUR, ELHAM; MOHMAD-SABERE, AWIS-SUKARNI; MOHAMED, FARAHIDAH; JAFARI, SEID-MAHDI. Optimizing the encapsulation of black seed oil into alginate beads by ionic gelation. Journal of Food Engineering, v. 328, 2022, e111065. https://doi.org/10.1016/j.jfoodeng.2022.e111065 /*ref*/AZAM, MUHAMMAD; SAEED, MUHAMMAD; PASHA, IMRAN; SHAHID, MUHAMMAD. A prebiotic-based biopolymeric encapsulation system for improved survival of Lactobacillus rhamnosus. In Food Bioscience, v. 37, 2020, e100679.https://doi.org/10.1016/j.fbio.2020.100679 /*ref*/BANNIKOVA, ANNA; EVTEEV, ALEKSANDR; PANKIN, KIRILL; EVDOKIMOV, IVAN; KASAPIS, STEFAN. Microencapsulation of fish oil with alginate: In-vitro evaluation and controlled release. LWT - Food Science and Technology, v, 90, 2018, p. 310-315. https://doi.org/ 10.1016/j.fbp.2020.08.009 /*ref*/BARRAGÁN, LUIS; TOTOSAUS, ALFONSO; DE LOURDES, MARÍA. Probiotication of cooked sausages employing agroindustrial coproducts as prebiotic co-encapsulant in ionotropic alginate–pectin gels. International Journal of Food Science and Technology, v. 55, n. 3, 2020, p. 1088–1096. https://doi.org/ 10.1111/ijfs.14259 /*ref*/BELDARRAIN, TATIANA; VILLALONOS, RICARDO; LEIVA, JAVIER; SEVILLANO, EVA. Influence of multilayer microencapsulation on the viability of Lactobacillus casei using a combined double emulsion and ionic gelation approach. Food and Bioproducts Processing, v, 124, 2020, p. 57-71. https://doi.org/10.1016/j.lwt.2017.12.045 /*ref*/BOSNEA, LOULOUDA; MOSCHAKIS, TOMAS; NIGAM, POONAM; BILIADERIS, COSTAS. Growth adaptation of probiotics in biopolymer-based coacervate structures to enhance cell viability. LWT - Food Science and Technology, v. 77, 2017, p. 282-289.https://doi.org/10.1016/j.lwt.2016.11.056 /*ref*/BRITISH BROADCASTING CORPORATION (BBC). Probiotics in Food, Beverages, Dietary Supplements and Animal Feed, 2020.https://www.bccresearch.com/market-research/food-and-beverage/probiotics-market-ingredients-supplements-foods-report.html [consultado septiembre 04 de 2022]. /*ref*/BRITO DE SOUZA, VOLNEI; THOMAZINI, MARCELO; CHAVES, ISABELA-ELIAS; FERRO-FURTADO, ROSELAYNE; FAVARO-TRINDADE, CARMEN-SÍLVIA. Microencapsulation by complex coacervation as a tool to protect bioactive compounds and to reduce astringency and strong flavor of vegetable extracts. Food Hydrocolloids, v. 98, 2020, e105244. https://doi.org/10.1016/j.foodhyd.2019.105244 /*ref*/BURGAIN, JENNIFER; GAIANI, CLAIRE; LINDER, MICHEL; SCHER, JOEL. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, v. 104, n. 4, 2011, p. 467-483. https://doi.org/10.1016/j.jfoodeng.2010.12.031 /*ref*/CARPENTIER, JÉRÉMY; CONFORTO, EGLE; CHAIGNEAU, CARINE; VENDEVILLE, JEAN-EUDES; MAUGARD, THIERRY. Complex coacervation of pea protein isolate and tragacanth gum: Comparative study with commercial polysaccharides. Innovative Food Science and Emerging Technologies, v. 69, 2021, e102641.https://doi.org/10.1016/j.ifset.2021.102641 /*ref*/COLAK, NESRIN; TORUN, HÜLYA; GRUZ, JIRI; STRNAD, MIROSLAV; HERMOSÍN-GUTIÉRREZ, ISIDRO; HAYIRLIOGLU-AYAZ, SEMA; AYAZ, FAIK-AHMET. Bog bilberry phenolics, antioxidant capacity and nutrient profile. In Food Chemistry, v. 201, 2016, p. 339-349. https://doi.org/10.1016/j.foodchem.2016.01.062 /*ref*/COMUNIAN, TALITA; ARTWIN-ARCHUT, LAURA; GOMEZ- MASCARAQUE, ANDRÉ-BRODKORB; DRUSCH- STEPHAN. The type of gum arabic affects interactions with soluble pea protein in complex coacervation. Journal of Marine Systems, 2020, e103608.https://doi.org/10.1016/j.carbpol.2022.119851 /*ref*/COOK, MICHAEL; TZORTZIS, GEORGE; CHARALAMPOPOULOS, DIMITRIS; KHUTORYANSKIY, VITALIY. Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, v. 162, n. 1, 2012, p. 56-67.https://doi.org/10.1016/j.jconrel.2012.06.003 /*ref*/CUNNINGHAM, MARLA; AZCARATE-PERIL, M. ANDREA; BARNARD, ALAN; BENOIT, VALERIE; GRIMALDI, ROBERTA; GUYONNET, DENIS; HOLSCHER, HANNAH; HUNTER, KIRSTY; MANURUNG, SARMAULI; OBIS, DAVID; PETROVA, MARIYA; STEINERT, ROBERT; SWANSON, KELLY; VAN SINDEREN, DOUWE; VULEVIC, JELENA; GIBSON, GLENN. Shaping the Future of Probiotics and Prebiotics. Trends in Microbiology, v. 29, n. 8, 2021, p. 667-685. https://doi.org/10.1016/j.tim.2021.01.003 /*ref*/FARAHMAND, ATEFEH; GHORANI, BEHROUZ; EMADZADEH, BAHAREH. Millifluidic-assisted ionic gelation technique for encapsulation of probiotics in double-layered polysaccharide structure. Food Research International, vol. 160, 2022, e111699.https://doi.org/10.1016/j.foodres.2022.111699 /*ref*/FERNANDO, ILEKUTTIGE-PRIYAN-SHANURA; LEE, WON-WOO; HAN, EUI-JEONG; AHN, GINNAE. Alginate-based nanomaterials: Fabrication techniques, properties, and applications. Chemical Engineering Journal, v. 391, 2020, e123823.https://doi.org/10.1016/j.cej.2019.123823 /*ref*/FIOCCO, DANIELA; LONGO, ANGELA; ARENA, MATTIA-PIA; RUSSO, PASQUALE; SPANO, GIUSEPPE; CAPOZZI, VITTORIO. How probiotics face food stress: They get by with a little help. Critical Reviews in Food Science and Nutrition, vol, 60, n. 9, 2020, p. 1552-1580.https://doi.org/10.1080/10408398.2019.1580673 /*ref*/GHARANJIG, HAMID; GHARANJIG, KAMALADIN; HOSSEINNEZHAD, MOZHGAN; JAFARI, SEID MAHDI. Development and optimization of complex coacervates based on zedo gum, cress seed gum and gelatin. International Journal of Biological Macromolecules, v. 148, 2020, p. 31-40.https://doi.org/10.1016/j.ijbiomac.2020.01.115 /*ref*/GOMEZ-ESTACA, JOAQUÍN; COMUNIANO, TALITA-ANINE; MONTERO, PILAR; FERRO-FURTADO, ROSELAYNE; FAVARO-TRINDADE, CARMEN-SÍLVIA. Encapsulation of an astaxanthin-containing lipid extract from shrimp waste by complex coacervation using a novel gelatin-cashew gum complex. Food Hydrocolloids, v. 61, 2016, p. 155-162.https://doi.org/10.1016/j.foodhyd.2016.05.005 /*ref*/GUINÉ, RAQUEL; FLORENÇA, SOFIA; BARROCA, MARIA-JOÃO; ANJOS, OFÉLIA. The duality of innovation and food development versus purely traditional foods. Trends in Food Science and Technology, v. 109, 2021, p. 16-24. https://doi.org/10.1016/j.tifs.2021.01.010 /*ref*/GUO, QI; LI, SHIDONG; TANG, JIAXIN; CHANG, SHUAIDAN; QIANG, LIYUE; DU, GENGAN; YUE, TIANLI; YUAN, YAHONG. Microencapsulation of Lactobacillus plantarum by spray drying: Protective effects during simulated food processing, gastrointestinal conditions, and in kefir. International Journal of Biological Macromolecules, v. 194, 2022, p. 539-545.https://doi.org/10.1016/j.ijbiomac.2021.11.096 /*ref*/HARPENI, ESTI; FIRANTI; GHANI, ABDEL; WARDIYANTO, WARDIYANTO. Effects of encapsulated Bacillus sp. D2.2 on gut bacterial composition and immune system in brown-marbled grouper Epinephelus fuscoguttatus. IOP Conference Series: Earth and Environmental Science, vol, 919, n. 1, 2021. https://doi.org/10.1088/1755-1315/919/1/012061 /*ref*/HOLKEM, AUGUSTO; RADDATZ, GREICE; BARIN, JULIANO; MORAES, ERICO; MULLER, EDSON; CODEVILLA, CRISTIANE; LOPES, EDUARDO; FERREIRA, CARLOS; DE MENEZES, CRISTIANO. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. Food Science and Technology, v. 76, 2016, p. 216-221.https://doi.org/10.1016/j.ijbiomac.2021.11.096 /*ref*/HU, LIANDONG; GAO, NA; LI, JIANLI; SUN, YONGBING; YANG, XIAONING. Development and evaluation of novel microcapsules containing poppy-seed oil using complex coacervation. Journal of Food Engineering, vol, 161, 2015, p. 87-93.https://doi.org/10.1016/j.jfoodeng.2015.03.027 /*ref*/JAIN, ASHAY; THAKUR, DEEPIKA; GHOSHAL, GARGI; KATARE, OM-PRAKASH; SHIVHARE, UMASHANKER. Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth. International Journal of Biological Macromolecules, v. 87, 2016, p. 101–113. https://doi.org/10.1016/j.ijbiomac.2016.01.117 /*ref*/JIANG, HUIYONG; YAN, REN; WANG, KAICEN; WANG, QIANGQIANG; CHEN, XIAOXIAO; CHEN, LIFENG; LI, LANJUAN; LV, LONGXIAN. Lactobacillus reuteri DSM 17938 alleviates D-galactosamine-induced liver failure in rats. Biomedicine and Pharmacotherapy, v, 133, 2021, e111000. https://doi.org/10.1016/j.biopha.2020.111000 /*ref*/JIANG, ZHAOWEI; LI, MOTING; MCCLEMENTS, DAVID-JULIAN; LIU, XUEBO; LIU, FUGUO. Recent advances in the design and fabrication of probiotic delivery systems to target intestinal inflammation. Food Hydrocolloids, v. 125, 2022, e107438.https://doi.org/10.1016/j.foodhyd.2021.107438 /*ref*/JRIDI, MOURAD; ABDELHEDI, OLA; SALEM, ALI; KECHAOU, HELA; NASRI, MONCEF; MENCHARI, YOSRA. Physicochemical, antioxidant and antibacterial properties of fish gelatin-based edible films enriched with orange peel pectin: Wrapping application. Food Hydrocolloids, v. 103, 2020, e105688. https://doi.org/10.1016/j.foodhyd.2020.105688 /*ref*/KIM, JIHYUN; HLAING, SHWE-PHYU; LEE, JUHO; SAPARBAYEVA, ARUZHAN; KIM, SANGSIK; HWANG, DONG-SOO; LEE, EUN-HEE; YOON, IN-SOO; YUN, HWAYOUNG; KIM, MIN-SOO; MOON, HYUNG-RYONG; JUNG, YUNJIN; YOO, JIN-WOOK. Exfoliated bentonite/alginate nanocomposite hydrogel enhances intestinal delivery of probiotics by resistance to gastric pH and on-demand disintegration. Carbohydrate Polymers, v. 272, 2021, e118462. https://doi.org/10.1016/j.carbpol.2021.118462 /*ref*/KRUNIĆ, TANJA; OBRADOVIĆ, NATAŠA; RAKIN, MARICA. Application of whey protein and whey protein hydrolysate as protein based carrier for probiotic starter culture. Food Chemistry, v. 293, 2019, p. 74-82. https://doi.org/10.1016/j.foodchem.2019.04.062 /*ref*/LIAO, YANG; HU, YU; FU, NAN; HU, JUWU; XIONG, HUA; CHEN, XIAO-DONG; ZHAO, QIANG. Maillard conjugates of whey protein isolate-xylooligosaccharides for the microencapsulation of: Lactobacillus rhamnosus: Protective effects and stability during spray drying, storage and gastrointestinal digestion. Food and Function, v. 12, n. 9, 2021, p. 4034-4045. https://doi.org/10.1039/d0fo03439h /*ref*/LIU, ZHIJING; LIU, FEI; WANG, WAN; SUN, CHANGBAO; GAO, DA; MA, JIAGE; HUSSAIN, MUHAMMAD- ALTAF; XU, CONG; JIANG, ZHANMEI; HOU, JUNCAI. Study of the alleviation effects of a combination of: Lactobacillus rhamnosus and inulin on mice with colitis. Food and Function, v. 11, n. 5, 2020, p. 3823-3837.https://doi.org/10.1039/c9fo02992c /*ref*/LOYEAU, PAULA; SPOTTI, MARIA; VINDEROLA, GABRIEL; CARRARA, CARLOS. Encapsulation of potential probiotic and canola oil through emulsification and ionotropic gelation, using protein/polysaccharides Maillard conjugates as emulsifiers. Food Science and Technology, v. 150, 2021, e111980. https://doi.org/10.1016/j.lwt.2021.111980 /*ref*/MAHDI, AMER-ALI; MOHAMMED, JALALELDEEN-KHALEEL; AL-ANSI, WALEED; GHALEB, ABDULJALIL; AL-MAQTARI, QAIS-ALI; MA, MENGJIAO; AHMED, MOHAMED-ISMAEL; WANG, HONGXIN. Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying. International Journal of Biological Macromolecules, v. 152, 2020, p. 1125-1134.https://doi.org/10.1016/j.ijbiomac.2019.10.201 /*ref*/MAHMOUD, MONA; ABDALLAH, NAGWA; EL-SHAFEI, KAWTHER; TAWFIK, NABIL; EL-SAYED, HODA. Survivability of alginate-microencapsulated Lactobacillus plantarum during storage, simulated food processing and gastrointestinal conditions. Heliyon, v. 6, n. 3, 2020, e03541. https://doi.org/10.1016/j.heliyon.2020.e03541 /*ref*/MANOJLOVIĆ, VERICA; NEDOVI, VIKTOR; KAILASAPATHY, KASIPATHY; ZUIDAM, NICOLAAS-JAN. Encapsulación de probióticos para su uso en productos alimenticios. En Tecnologías de encapsulación para ingredientes alimentarios activos y procesamiento de alimentos, Springer, Nueva York, 2010, 269p.https://doi.org/10.1007/978-1-4419-1008-0_10 /*ref*/MARLUCI-PALAZZOLLI, SILVA; MARTELLI-TOSI, MILENA; MASSARIOLI, ADNA-PRADO; MELO, PRISCILLA-SIQUEIRA; ALENCAR, SEVERINO-MATIAS; FAVARO-TRINDADE, CARMEN. Co-encapsulation of guaraná extracts and probiotics increases probiotic survivability and simultaneously delivers bioactive compounds in simulated gastrointestinal fluids, Food Science and Technology, v. 161, 2022, e113351.https://doi.org/10.1016/j.lwt.2022.113351 /*ref*/MARQUES-DA SILVA, THAIANE; SONZA-PINTO, VANDRÉ; RAMIRES-FONSECA-SOARES, VÍTOR; MAROTZ, DÉBORA; CICHOSKI, ALEXANDRE-JOSÉ; QUEIROZ-ZEPKA, LEILA; JACOB-LOPES, EDUARDO; DE BONA-DA SILVA, CRISTIANE; DE MENEZES, CRISTIANO-RAGAGNIN. Viability of microencapsulated Lactobacillus acidophilus by complex coacervation associated with enzymatic crosslinking under application in different fruit juices. Food Research International, v. 141, 2021, e 110190.https://doi.org/10.1016/j.foodres.2021.110190 /*ref*/MIN, MIN; BUNT, CRAIG; MASON, SUSAN; HUSSAIN, MALIK. Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition, v. 59, n. 16, 2019, p. 2626-2641.https://doi.org/10.1080/10408398.2018.1462760 /*ref*/MIRANDA-LINARES; QUINTANAR-GUERRERO; DEL REAL, ALICIA; ZAMBRANO-ZARAGOZA, MARÍA. Spray-drying method for the encapsulation of a functionalized ingredient in alginate-pectin nano- and microparticles loaded with distinct natural actives: Stability and antioxidant effect. Food Hydrocolloids, v. 101, 2020, e105560.https://doi.org/10.1016/j.foodhyd.2019.105560 /*ref*/MORDOR INTELLIGENCE. Mercado de probióticos: crecimiento, tendencias, impacto de covid-19 y pronósticos (2022 - 2027), 2021. https://www.mordorintelligence.com/industry-reports/probiotics-market [consultado agosto 25 de 2022]. /*ref*/MUHOZA, BERTRAND; QI, BAOKUN; HARINDINTWALI, JEAN-DAMASCENE; FARAG-KOKO, MARWA-YAGOUB; ZHANG, SHUANG; LI, YANG. Combined plant protein modification and complex coacervation as a sustainable strategy to produce coacervates encapsulating bioactives. Food Hydrocolloids, v. 124, 2022, e107239.https://doi.org/10.1016/j.foodhyd.2021.107239 /*ref*/MUHOZA, BERTRAND; XIA, SHUQIN; WANG, XUEJIAO; ZHANG, XIAOMING; LI, YANG; ZHANG, SHUANG. Microencapsulation of essential oils by complex coacervation method: preparation, thermal stability, release properties and applications. Critical Reviews in Food Science and Nutrition, v. 62, n. 5, 2020, p. 1363-382.https://doi.org/10.1080/10408398.2020.1843132 /*ref*/NI, XIAOTIAN; TAN, ZHAOLI; DING, CHEN; ZHANG, CHUNCHAO; SONG, LAN; YANG, SHUAI; LIU, MINGWEI; JIA, RU; ZHAO, CHUANHUA; SONG, LEI; LIU, WANLIN; ZHOU, QUAN; GONG, TONGQING; LI, XIANJU; TAI, YANHONG; ZHU, WEIMIN; SHI, TIELIU; WANG, YI; XU, JIANMING; ZHEN, BEI; QIN, JUN. A region-resolved mucosa proteome of the human stomach. Nature Communications, v. 10, n. 1, 2019, p. 1-11.https://doi.org/10.1038/s41467-018-07960-x /*ref*/OBRADOVIĆ, NATAŠA; VOLIĆ, MINA; NEDOVIĆ, VIKTOR; RAKIN, MARICA; BUGARSKI, BRANKO. Microencapsulation of probiotic starter culture in protein–carbohydrate carriers using spray and freeze-drying processes: Implementation in whey-based beverages. Journal of Food Engineering, v. 321, 2022, e110948.https://doi.org/10.1016/j.jfoodeng.2022.110948 /*ref*/ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA AGRICULTURA Y LA ALIMENTACIÓN Y LA ORGANIZACIÓN MUNDIAL DE LA SALUD (FAO y OMS). Probióticos en los alimentos Propiedades saludables y nutricionales y directrices para la evaluación. In Estudios FAO alimentación y nutrición, v. 85, 2006. /*ref*/ORTIZ-ROMERO, NALLELY; OCHOA-MARTINEZ, LUZ-ARACELI; GONZÁLEZ-HERRERA, SILVIA-MARINA; RUTIAGA-QUIÑONES, OLGA-MIRIAM; GALLEGOS-INFANTE, JOSÉ ALBERTO. Avances en las investigaciones sobre la encapsulación mediante gelación iónica: una revisión sistemática. TecnoLógicas, v. 24, n. 52, 2021, e1962.https://doi.org/10.22430/22565337.1962 /*ref*/PHILLIPS, CHARLES; WELCH, BRADLEY; GARRETT, MICHAEL; GRAYSON, BERNADETTE. Regional heterogeneity in rat Peyer’s patches through whole transcriptome analysis. Experimental Biology and Medicine, v. 246, n. 5, 2020, p. 513-522.https://doi.org/10.1177/1535370220973014 /*ref*/PILLAI, PRASANTH; MORALES-CONTRERAS, BLANCA; WICKER, LOUISE; NICKERSON, MICHAEL. Effect of enzyme de-esterified pectin on the electrostatic complexation with pea protein isolate under different mixing conditions. Food Chemistry, v. 305, 2020, e125433.https://doi.org/10.1016/j.foodchem.2019.125433 /*ref*/PIMENTEL, TATIANA-COLOMBO; COSTA, WHYARA-KAROLINE-ALMEIDA-DA; BARÃO, CARLOS-EDUARDO; ROSSET, MICHELE; MAGNANI, MARCIANE. Vegan probiotic products: A modern tendency or the newest challenge in functional foods. Food Research International, v. 140, 2021, e110033. https://doi.org/10.1016/j.foodres.2020.110033 /*ref*/PLAZA-DIAZ, JULIO; RUIZ-OJEDA, FRANCISCO-JAVIER; GIL-CAMPOS, MERCEDES; GIL, ANGEL. Mechanisms of Action of Probiotics. Advances in Nutrition, v. 10, 2019, p. 49-S66.https://doi.org/10.1093/advances/nmy063 /*ref*/RADDATZ, GREICE-CARINE; PINTO, VANDRÉ-SONZA; ZEPKA, LEILA-QUEIROZ; BARIN, SMANIOTO; CICHOSKI, ALEXANDRE-JOSÉ; BONA, CRISTIANE-DE. Use of red onion (Allium cepa L.) residue extract in the co-microencapsulation of probiotics added to a vegan product. Food Research International, 2022, e111854.https://doi.org/10.1016/j.foodres.2022.111854 /*ref*/REQUE, PRISCILLA-MAGRO; BRANDELLI, ADRIANO. Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends in Food Science and Technology, v, 114, 2021, p. 1-10. https://doi.org/10.1016/j.tifs.2021.05.022 /*ref*/RISCH, SARA. Encapsulación: descripción general de usos y técnicas. En: Risch, SJ y Reineccius, G., Eds., Encapsulation and Controlled Release of Food Ingredients, ACS Symposium Series, Publicaciones de la AEC, Washington DC, v. 590, 1995, 2-7 p.https://doi.org/10.1021/bk-1995-0590.ch001RODRÍGUEZ, YEIMY-ALEJANDRA; ROJAS, ANDRÉS-FELIPE. Encapsulación de probióticos para aplicaciones alimenticias. Biosalud, v. 15, 2016, p.106-115. https://doi.org/10.17151/biosa.2016.15.2.10 /*ref*/SAAD, NAIMA; DELATTRE, CÉDRIC; URDACI, MARÍA., SCHMITTER, JEAN-MARIE; BRESSOLLIER, PHILIPEE. An overview of the last advances in probiotic and prebiotic field. Food Science and Technology, v. 50, n. 1, 2013, p. 1-16.https://doi.org/10.1016/j.lwt.2012.05.014 /*ref*/SHARIFI, SOHRAB; REZAZAD-BARI, MAHMOUD; ALIZADEH, MOHAMMAD; ALMASI, HADI; AMIRI, SABER. Use of whey protein isolate and gum Arabic for the co-encapsulation of probiotic Lactobacillus plantarum and phytosterols by complex coacervation: Enhanced viability of probiotic in Iranian white cheese. Food Hydrocolloids, v. 113, 2021, e106496.https://doi.org/10.1016/j.foodhyd.2020.106496 /*ref*/SHOJI, A; OLIVEIRA, A; BALIEIRO, J; FREITAS, O; THOMAZINI, M; HEINEMANN, R; OKURO, P; FAVARO-TRINDADE, C. Viability of L. acidophilus microcapsules and their application to buffalo milk yoghurt. Food and Bioproducts Processing, v. 91, n. 2, 2013, p 83–88.https://doi.org/10.1016/j.fbp.2012.08.009 /*ref*/SING, CHARLES. Development of the modern theory of polymeric complex coacervation. Advances in Colloid and Interface Science, v. 239, 2017, p. 2-16.https://doi.org/10.1016/j.cis.2016.04.004 /*ref*/SPACOVA, IRINA; VAN-BEECK, WANNES; SEYS, SVEN; DEVOS, FIEN; VANOIRBEEK, JEROEN; VANDERLEYDEN, JOZEF; CEUPPENS, JAN; PETROVA, MARIYA; LEBEER, SARAH. Lactobacillus rhamnosus probiotic prevents airway function deterioration and promotes gut microbiome resilience in a murine asthma model. Gut Microbes, v. 11, n. 6, 2020, p. 1729-1744. https://doi.org/10.1080/19490976.2020.1766345 /*ref*/SU, CHUN-RU; HUANG, YU-YAN; CHEN, QI-HUI; LI, MENG-FAN; WANG, HAO; LI, GUO-YAN; YUAN, YANG. A novel complex coacervate formed by gliadin and sodium alginate: Relationship to encapsulation and controlled release properties. Food Science and Technology, v. 139, 2021, e110591. https://doi.org/10.1016/j.lwt.2020.110591 /*ref*/STOLL, LIANA; COSTA, TANIA; JABLONSKI, ANDRÉ; FLÔRES, SIMONE; OLIVEIRA, ALESSANDRO. Microencapsulation of Anthocyanins with Different Wall Materials and Its Application in Active Biodegradable. Food and Bioprocess Technology, v. 9, n. 1, 2016, p 172-181. https://doi.org/10.1007/s11947-015-1610-0 /*ref*/TAN, LI-LING; MAHOTRA, MANISH; CHAN, SI-YE; LOO, SAY-CHYE-JOACHIM. In situ alginate crosslinking during spray-drying of lactobacilli probiotics promotes gastrointestinal-targeted delivery. Carbohydrate Polymers, v. 286, 2022, e119279.https://doi.org/10.1016/j.carbpol.2022.119279 /*ref*/THANH-UYEN, NGUYEN-THI; ABDUL-HAMID, ZURATUL-AIN; THI, LE-ANH; AHMAD, NURAZREENA-BINTI. Synthesis and characterization of curcumin loaded alginate microspheres for drug delivery. Journal of Drug Delivery Science and Technology, v. 58, 2020, e101796. https://doi.org/10.1016/j.jddst.2020.101796 /*ref*/TIMILSENA, YAKINDRA-PRASAD; AKANBI, TAIWO; KHALID, NAUMAN; ADHIKARI, BENU; BARROW, COLIN. Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, v. 121, 2019, p. 1276–1286. https://doi.org/10.1016/j.ijbiomac.2018.10.144 /*ref*/VARGAS, SARA; DELGADO-MACUIL, RAÚL-JACOBO; RUIZ-ESPINOSA, HÉCTOR; ROJAS-LÓPEZ, MARLON; AMADOR-ESPEJO, GENARO-GUSTAVO. High-intensity ultrasound pretreatment influence on whey protein isolate and its use on complex coacervation with kappa carrageenan: Evaluation of selected functional properties. Ultrasonics Sonochemistry, v. 70, 2021, e105340. https://doi.org/10.1016/j.ultsonch.2020.105340 /*ref*/VASILJEVIC, TODOR; SHAH, NAGENDRA. Probiotics-From Metchnikoff to bioactives. International Dairy Journal, v. 18, n. 7, 2008, p. 714-728.https://doi.org/10.1016/j.idairyj.2008.03.004 /*ref*/WANG, LI; ZHANG, BO-BO; YANG, XIAO-YU; SU, BAO-LIAN. Alginate@polydopamine@SiO2 microcapsules with controlled porosity for whole-cell based enantioselective biosynthesis of (S)−1-phenylethanol. Colloids and Surfaces B: Biointerfaces, v. 214, 2022, e112454.https://doi.org/10.1016/j.colsurfb.2022.112454 /*ref*/WEST, NICHOLAS; HUGHES, LILY; RAMSEY, REBECCA; ZHANG, PING; MARTONI, CHRISTOPHER; LEYER, GREGORY; CRIPPS, ALLAN; COX, AMANDA. Probiotics, Anticipation Stress, and the Acute Immune Response to Night Shift. Frontiers in Immunology, v. 11, 2021, p. 1-10. https://doi.org/10.3389/fimmu.2020.599547 /*ref*/XU, CONG; BAN, QINGFENG; WANG, WAN; HOU, JUNCAI; JIANG, ZHANMEI. Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. Journal of Controlled Release, v. 349, n. 600, 2022, p. 184-205.https://doi.org/10.1016/j.jconrel.2022.06.061 /*ref*/YAN, XUEFANG; JIN, JIAJIA; SU, XINHUAN; YIN, XIANLUN; GAO, JING; WANG, XIAOWEI; ZHANG, SHUCUI; BU, PEILI; WANG, MANSEN; ZHANG, YUN; WANG, ZHE; ZHANG, QUNYE. Intestinal flora modulates blood pressure by regulating the synthesis of intestinal-derived corticosterone in high salt-induced hypertension. Circulation Research, 2020, p. 839-853. https://doi.org/10.1161/CIRCRESAHA.119.316394 /*ref*/YAO, MINGFEI; XIE, JIAOJIAO; DU, HENGJUN; MCCLEMENTS, DAVID-JULIAN; XIAO, HANG; LI, LANJUAN. Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, v. 19, n. 2, 2020, p. 857-874.https://doi.org/10.1111/1541-4337.12532 /*ref*/YOHA, KANDASAMY-SUPPIRAMANIAM; NIDA, SUNDUS; DUTTA, SAYANTANI; MOSES, JA; ANANDHARAMAKRISHNAN. Targeted Delivery of Probiotics: Perspectives on Research and Commercialization. In Probiotics and Antimicrobial Proteins, v. 14, n. 1, 2022, p. 15-48. https://doi.org/10.1007/s12602-021-09791-7 /*ref*/YUAN, YONGKAI; YIN, MING; CHEN, LING; LIU, FEI; CHEN, MAOSHEN; ZHONG, FANG. Effect of calcium ions on the freeze-drying survival of probiotic encapsulated in sodium alginate. Food Hydrocolloids, v. 130, 2022, e107668.https://doi.org/10.1016/j.foodhyd.2022.107668 /*ref*/ZEASHAN, MUHAMMAD; AFZAAL, MUHAMMAD; SAEED, FARHAN; AHMED, AFTAB; TUFAIL, TABUSSAM; AHMED, AWAIS; MUHAMMAD, FAQIR ANJUM. Survival and behavior of free and encapsulated probiotic bacteria under simulated human gastrointestinal and technological conditions. Food Science and Nutrition, v. 8, n. 5, 2020, p. 2419-2426.https://doi.org/ 10.1002/fsn3.1531 /*ref*/ZHAO, MENG; HUANG, XUE; ZHANG, HUI; ZHANG, YANZHEN; GÄNZLE, MICHAEL; YANG, NAN; NISHINARI, KATSUYOSHI; FANG, YAPENG. Probiotic encapsulation in water-in-water emulsion via heteroprotein complex coacervation of type-A gelatin/sodium caseinate. Food Hydrocolloids, v. 105, 2020, e105790.https://doi.org/10.1016/j.foodhyd.2020.105790 /*ref*/ZHOU, BOLUN; YUAN, YUTONG; ZHANG, SHANSHAN; GUO, CAN; LI, XIAOLING; LI, GUIYUAN; XIONG, WEI; ZENG, ZHAOYANG. Intestinal Flora and Disease Mutually Shape the Regional Immune System in the Intestinal Tract. Frontiers in Immunology, v. 11, 2020, p. 1-14. https://doi.org/10.3389/fimmu.2020.00575 /*ref*/ Derechos de autor 2023 Universidad del Cauca https://creativecommons.org/licenses/by-nc-nd/4.0 |