Physical assessment of a Mollisol under agroecological management in the Quillota Valley, Mediterranean Central Chile
Abstract A number of agroecological practices have been proposed for assessing soil quality. Several physical soil properties have been shown to be important for determining soil quality by using the sustainability index (SI) and the cumulative rating approach. The main aim of the study was to determine the effects of different agroecological managements on the physical properties of a Mollisol in the Mediterranean central Chile. In addition, some physical properties were selected to compare the soil quality among different agroecological management practices and highly mechanized intensive systems by using the SI and cumulative rating approaches. An experimental field was defined in an area of 3.5 ha in 2014. Four sites with different agroecological practices were selected in 2019 to assess soil physical properties: rainfed Mediterranean annual prairie - no tillage (1-S), irrigated perennial prairie with deep-root species - no tillage (2-N), irrigated annual and perennial prairie - conventional tillage (4-S), irrigated vegetables and flowers - minimum tillage (4-N); an avocado orchard with traditional management was used as the control. Soil organic carbon and the following soil physical properties were selected to assess SI and CR: bulk density, total porosity, void ratio, air capacity, fast-drainage pores, relative field capacity, hydraulic conductivity, structural stability index and unavailable water pores. The applicability of the selected physical indicators to the SIs of agroecological management practices compared with the control was demonstrated. The cumulative rating index (CR) for each land use showed that all agroecological practices constituted sustainable soil management (25≤CR<30), whereas the avocado orchard showed the least sustainable management (30≤CR<40), and a change in soil use is recommended.
Main Authors: | , , , , , , , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Pontificia Universidad Católica de Chile.Facultad de Agronomía e Ingeniería Forestal
2020
|
Online Access: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S2452-57312020000300261 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract A number of agroecological practices have been proposed for assessing soil quality. Several physical soil properties have been shown to be important for determining soil quality by using the sustainability index (SI) and the cumulative rating approach. The main aim of the study was to determine the effects of different agroecological managements on the physical properties of a Mollisol in the Mediterranean central Chile. In addition, some physical properties were selected to compare the soil quality among different agroecological management practices and highly mechanized intensive systems by using the SI and cumulative rating approaches. An experimental field was defined in an area of 3.5 ha in 2014. Four sites with different agroecological practices were selected in 2019 to assess soil physical properties: rainfed Mediterranean annual prairie - no tillage (1-S), irrigated perennial prairie with deep-root species - no tillage (2-N), irrigated annual and perennial prairie - conventional tillage (4-S), irrigated vegetables and flowers - minimum tillage (4-N); an avocado orchard with traditional management was used as the control. Soil organic carbon and the following soil physical properties were selected to assess SI and CR: bulk density, total porosity, void ratio, air capacity, fast-drainage pores, relative field capacity, hydraulic conductivity, structural stability index and unavailable water pores. The applicability of the selected physical indicators to the SIs of agroecological management practices compared with the control was demonstrated. The cumulative rating index (CR) for each land use showed that all agroecological practices constituted sustainable soil management (25≤CR<30), whereas the avocado orchard showed the least sustainable management (30≤CR<40), and a change in soil use is recommended. |
---|