Association between undercarboxylated osteocalcin, bone mineral density, and metabolic parameters in postmenopausal women

ABSTRACT Objective: Osteocalcin has been associated with several effects on energy and glucose metabolism. However, the physiological role of undercarboxylated osteocalcin (U-osc; the hormonally active isoform of osteocalcin) is still controversial. To correlate the serum levels of U-osc with bone mineral density (BMD) values and metabolic parameters in postmenopausal women. Subjects and methods: Cross-sectional study including 105 postmenopausal women (age 56.5 ± 6.1 years, body mass index [BMI] 28.2 ± 4.9 kg/m2) grouped based on the presence of three or less, four, or five criteria of metabolic syndrome according to the International Diabetes Federation (IDF). The subjects underwent dualenergy x-ray absorptiometry (DXA) for the assessment of body composition and BMD and blood tests for the measurement of U-osc and bone-specific alkaline phosphatase (BSAP) levels. Results: The mean U-osc level was 3.1 ± 3.4 ng/mL (median 2.3 ng/mL, range 0.0-18.4 ng/mL) and the mean BSAP level was 12.9 ± 4.0 ng/mL (median 12.1 ng/mL, range 73-24.4 ng/mL). There were no associations between U-osc and BSAP levels with serum metabolic parameters. Lower fasting glucose levels were observed in participants with increased values of U-osc/femoral BMD ratio (3.61 ± 4 ng/mL versus 10.2 ± 1.6 ng/mL, p = 0.036). When the participants were stratified into tertiles according to the U-osc/ femoral BMD and U-osc/lumbar BMD ratios, lower fasting glucose levels correlated with increased ratios (p = 0.029 and p = 0.042, respectively). Conclusion: Based on the ratio of U-osc to BMD, our study demonstrated an association between U-osc and glucose metabolism. However, no association was observed between U-osc and metabolic parameters.The U-osc/BMD ratio is an innovative way to correct the U-osc value for bone mass.

Saved in:
Bibliographic Details
Main Authors: Zanatta,Leila C. B., Boguszewski,Cesar L., Borba,Victoria Z. C., Moreira,Carolina A.
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Endocrinologia e Metabologia 2018
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2359-39972018000400446
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Objective: Osteocalcin has been associated with several effects on energy and glucose metabolism. However, the physiological role of undercarboxylated osteocalcin (U-osc; the hormonally active isoform of osteocalcin) is still controversial. To correlate the serum levels of U-osc with bone mineral density (BMD) values and metabolic parameters in postmenopausal women. Subjects and methods: Cross-sectional study including 105 postmenopausal women (age 56.5 ± 6.1 years, body mass index [BMI] 28.2 ± 4.9 kg/m2) grouped based on the presence of three or less, four, or five criteria of metabolic syndrome according to the International Diabetes Federation (IDF). The subjects underwent dualenergy x-ray absorptiometry (DXA) for the assessment of body composition and BMD and blood tests for the measurement of U-osc and bone-specific alkaline phosphatase (BSAP) levels. Results: The mean U-osc level was 3.1 ± 3.4 ng/mL (median 2.3 ng/mL, range 0.0-18.4 ng/mL) and the mean BSAP level was 12.9 ± 4.0 ng/mL (median 12.1 ng/mL, range 73-24.4 ng/mL). There were no associations between U-osc and BSAP levels with serum metabolic parameters. Lower fasting glucose levels were observed in participants with increased values of U-osc/femoral BMD ratio (3.61 ± 4 ng/mL versus 10.2 ± 1.6 ng/mL, p = 0.036). When the participants were stratified into tertiles according to the U-osc/ femoral BMD and U-osc/lumbar BMD ratios, lower fasting glucose levels correlated with increased ratios (p = 0.029 and p = 0.042, respectively). Conclusion: Based on the ratio of U-osc to BMD, our study demonstrated an association between U-osc and glucose metabolism. However, no association was observed between U-osc and metabolic parameters.The U-osc/BMD ratio is an innovative way to correct the U-osc value for bone mass.