Melhorando o Desempenho Computacional de um Esquema de Diferenças Finitas para as Equações de Maxwell
RESUMO As equações de Maxwell têm um papel crucial na teoria do eletromagnetismo e suas aplicações. Entretanto, nem sempre é possível resolver essas equações de forma analítica. Por isso, precisamos de métodos numéricos para obter soluções aproximadas das equações de Maxwell. O método FDTD (Finite-Diference Time-Domain), proposto por K. Yee, é amplamente usado devido a sua simplicidade e eficiência. No entanto, esse método apresenta um alto custo computacional. Neste trabalho, propomos uma implementação paralela do método FDTD para execução em GPUs, usando a plataforma CUDA. Nosso objetivo é reduzir o tempo de processamento requerido para viabilizar o uso do método FDTD para a simulação da propagação de ondas eletromagnéticas. Avaliamos o algoritmo proposto considerando condições de contorno de tipo Dirichlet e também condições absorventes. Obtivemos ganhos de desempenho que variam de 7 a 8 vezes, comparando a implementação paralela proposta com uma versão sequencial otimizada.
Main Authors: | , , |
---|---|
Format: | Digital revista |
Language: | Portuguese |
Published: |
Sociedade Brasileira de Matemática Aplicada e Computacional
2016
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000100093 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | RESUMO As equações de Maxwell têm um papel crucial na teoria do eletromagnetismo e suas aplicações. Entretanto, nem sempre é possível resolver essas equações de forma analítica. Por isso, precisamos de métodos numéricos para obter soluções aproximadas das equações de Maxwell. O método FDTD (Finite-Diference Time-Domain), proposto por K. Yee, é amplamente usado devido a sua simplicidade e eficiência. No entanto, esse método apresenta um alto custo computacional. Neste trabalho, propomos uma implementação paralela do método FDTD para execução em GPUs, usando a plataforma CUDA. Nosso objetivo é reduzir o tempo de processamento requerido para viabilizar o uso do método FDTD para a simulação da propagação de ondas eletromagnéticas. Avaliamos o algoritmo proposto considerando condições de contorno de tipo Dirichlet e também condições absorventes. Obtivemos ganhos de desempenho que variam de 7 a 8 vezes, comparando a implementação paralela proposta com uma versão sequencial otimizada. |
---|