A Compact Dual-Band CPW-Fed Planar Monopole Antenna for 2.62–2.73 GHz Frequency Band, WiMAX and WLAN Applications

Abstract In this paper, we present a compact and low-profile monopole antenna with a simple structure for the 2.6–2.73 GHz frequency band, the Worldwide Interoperability for Microwave Access (WiMAX) and the Wireless Local Area Network (WLAN) applications. The first configuration of our antenna mainly consists by three radiating elements: inverted L-shaped Stub1, L-shaped Stub2 and a rectangle Stub3. By adjusting the lengths of the three Stubs, three resonant frequencies can be achieved and adjusted separately. Then, the assembled between Stub2 and Stub3 gives the final design of our proposed antenna with a small overall size of 20 mm × 37 mm × 1.56 mm. From the experimental results it is observed that, the antenna prototype has achieved two operating bandwidths (S11≤ -10 dB): the first band from 2.62 to 2.73 GHz (110 MHz) and a second broadband from 3.02 to 7.30 GHz (4280 MHz) which combines WiMAX and WLAN applications. The antenna also exhibits an almost omnidirectional radiation patterns over the operating bands. The parameters which affect the performance of the antenna in terms of its frequency domain characteristics are studied in this paper. The details of the monopole antenna design along with simulated and experimental results are presented and discussed.

Saved in:
Bibliographic Details
Main Authors: Manouare,Ahmed Zakaria, Ibnyaich,Saida, Idrissi,Abdelaziz EL, Ghammaz,Abdelilah, Touhami,Naima Amar
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo 2017
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742017000200564
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract In this paper, we present a compact and low-profile monopole antenna with a simple structure for the 2.6–2.73 GHz frequency band, the Worldwide Interoperability for Microwave Access (WiMAX) and the Wireless Local Area Network (WLAN) applications. The first configuration of our antenna mainly consists by three radiating elements: inverted L-shaped Stub1, L-shaped Stub2 and a rectangle Stub3. By adjusting the lengths of the three Stubs, three resonant frequencies can be achieved and adjusted separately. Then, the assembled between Stub2 and Stub3 gives the final design of our proposed antenna with a small overall size of 20 mm × 37 mm × 1.56 mm. From the experimental results it is observed that, the antenna prototype has achieved two operating bandwidths (S11≤ -10 dB): the first band from 2.62 to 2.73 GHz (110 MHz) and a second broadband from 3.02 to 7.30 GHz (4280 MHz) which combines WiMAX and WLAN applications. The antenna also exhibits an almost omnidirectional radiation patterns over the operating bands. The parameters which affect the performance of the antenna in terms of its frequency domain characteristics are studied in this paper. The details of the monopole antenna design along with simulated and experimental results are presented and discussed.