Evaluation of zinc-oxide nanocoating on the characteristics and antibacterial behavior of nickel-titanium alloy

ABSTRACT Objective: To investigate the effect of ZnO nanocoating on mechanical properties of NiTi orthodontic wires and antibacterial activity. Methods: 0.016 x 0.022-in NiTi orthodontic wires were coated with ZnO nanoparticles using an electrochemical deposition method with three electrodes system in 0.1M Zn(NO3)2. Mechanical properties and frictional resistance of the coated wires were investigated using an universal testing machine. Antibacterial effect of ZnO coating was also investigated. Results: A stable adhered ZnO nanocoating on NiTi wires was obtained. The coated wires have a significant antibacterial activity against S. aureus, S. pyogens and E. coli, and a reduction of frictional forces by 34%. Conclusion: ZnO nanocoating may improve the antibacterial effects of NiTi wires and reduce the frictional resistance. Coating may be implanted in orthodontic practice for faster and safer treatment.

Saved in:
Bibliographic Details
Main Authors: Hammad,Shaza M., El-Wassefy,Noha A., Shamaa,Marwa Sameh, Fathy,Ahmed
Format: Digital revista
Language:English
Published: Dental Press International 2020
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2176-94512020000400051
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Objective: To investigate the effect of ZnO nanocoating on mechanical properties of NiTi orthodontic wires and antibacterial activity. Methods: 0.016 x 0.022-in NiTi orthodontic wires were coated with ZnO nanoparticles using an electrochemical deposition method with three electrodes system in 0.1M Zn(NO3)2. Mechanical properties and frictional resistance of the coated wires were investigated using an universal testing machine. Antibacterial effect of ZnO coating was also investigated. Results: A stable adhered ZnO nanocoating on NiTi wires was obtained. The coated wires have a significant antibacterial activity against S. aureus, S. pyogens and E. coli, and a reduction of frictional forces by 34%. Conclusion: ZnO nanocoating may improve the antibacterial effects of NiTi wires and reduce the frictional resistance. Coating may be implanted in orthodontic practice for faster and safer treatment.