In vitro/in vivo performance of different complexes of itraconazole used in the treatment of vaginal candidiasis

A large majority of new chemical entities and many existing drug molecules exhibit poor aqueous solubility, which may limit their potential use in developing drug formulations, with optimum bioavailability. One of the approaches to improve the solubility of a poorly water soluble drug and eventually its bioavailability is complexation with agents like humic acid (HA), fulvic acid (FA), β-cyclodextrin (β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and caffeine (Caff). The current work emphasized at employing these agents to prepare different complexes and their in vitro/in vivo assessment. All the complexes evaluated for their complexation efficiency and authenticated by molecular modeling; conformational analysis, differential scanning calorimetry (DSC), X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and mass spectroscopy. Furthermore, the complexes were assessed in an in vivo, rat vaginal model for their efficacy in treatment of vaginal candidiasis. Amongst the five tested complexes, fulvic acid-itraconazole complex yielded better solubility as well as in vivo efficacy and therefore may further be explored for developing a commercial formulation for treating vaginal candidiasis.

Saved in:
Bibliographic Details
Main Authors: Mirza,Mohammad Aamir, Rahman,Mohammad Akhlaquer, Talegaonkar,Sushama, Iqbal,Zeenat
Format: Digital revista
Language:English
Published: Universidade de São Paulo, Faculdade de Ciências Farmacêuticas 2012
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1984-82502012000400020
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A large majority of new chemical entities and many existing drug molecules exhibit poor aqueous solubility, which may limit their potential use in developing drug formulations, with optimum bioavailability. One of the approaches to improve the solubility of a poorly water soluble drug and eventually its bioavailability is complexation with agents like humic acid (HA), fulvic acid (FA), β-cyclodextrin (β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and caffeine (Caff). The current work emphasized at employing these agents to prepare different complexes and their in vitro/in vivo assessment. All the complexes evaluated for their complexation efficiency and authenticated by molecular modeling; conformational analysis, differential scanning calorimetry (DSC), X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and mass spectroscopy. Furthermore, the complexes were assessed in an in vivo, rat vaginal model for their efficacy in treatment of vaginal candidiasis. Amongst the five tested complexes, fulvic acid-itraconazole complex yielded better solubility as well as in vivo efficacy and therefore may further be explored for developing a commercial formulation for treating vaginal candidiasis.