Efficiency of selection in early generations of potato families with a view toward heat tolerance
Abstract The aim of this study was to evaluate the efficiency of selection of potato families in early generations for heat tolerance. Thirty families were evaluated in the seedling generation (SG), first clonal generation (FCG) in the field and greenhouse under high temperature conditions, and second clonal generation (SCG) under mild temperatures. The mean of the families was obtained in each generation. The 16 most productive families in FCG were selected, and the clones of these families were evaluated in experiments in the winter and rainy crop seasons. The results showed that family selection for tuber shape may be applied as of the SG. It was also observed that family selection in the FCG and SCG for yield and tuber specific gravity contributed to identification of clones tolerant to heat and responsive to environmental improvement.
Main Authors: | , , , , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Crop Breeding and Applied Biotechnology
2015
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1984-70332015000400210 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract The aim of this study was to evaluate the efficiency of selection of potato families in early generations for heat tolerance. Thirty families were evaluated in the seedling generation (SG), first clonal generation (FCG) in the field and greenhouse under high temperature conditions, and second clonal generation (SCG) under mild temperatures. The mean of the families was obtained in each generation. The 16 most productive families in FCG were selected, and the clones of these families were evaluated in experiments in the winter and rainy crop seasons. The results showed that family selection for tuber shape may be applied as of the SG. It was also observed that family selection in the FCG and SCG for yield and tuber specific gravity contributed to identification of clones tolerant to heat and responsive to environmental improvement. |
---|