Study of modal analysis based on fluid-structure interaction

Abstract In this work, a coupled fluid-structure problem is approached, comparing the result with the modal analysis of a structure. The objective of this work is to analyze the physical phenomenon of fluid-structure interaction of a flexible structure. For this, the coupled problem solved using an Arbitrary Lagrangean-Eulerian (ALE) approach. As support for solving the mathematical equations of coupled problem, ANSYS® physical analysis software was used. An experimental modal analysis, using the Rational Fractional Polynomial method was developed for a small scale steel structure, and the result of this was compared with the result obtained from the model simulated in the software. Their vibration modes and natural frequencies obtained by numerical modeling were validated experimentally. Whit the numerical modeling of the modal analysis of a structure experimentally validated, attempted to analyze the dynamic behavior of the structure when it is subjected to a load due to a fluid-flow through a coupled fluid-structure problem. The results presented in this work show that the structure subjected to loads due to the fluid-flow, moves according to its vibration modes.

Saved in:
Bibliographic Details
Main Authors: PEGORARO,M., GOMES,F. A. A., NOVAK,P. R.
Format: Digital revista
Language:English
Published: IBRACON - Instituto Brasileiro do Concreto 2018
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952018000601391
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract In this work, a coupled fluid-structure problem is approached, comparing the result with the modal analysis of a structure. The objective of this work is to analyze the physical phenomenon of fluid-structure interaction of a flexible structure. For this, the coupled problem solved using an Arbitrary Lagrangean-Eulerian (ALE) approach. As support for solving the mathematical equations of coupled problem, ANSYS® physical analysis software was used. An experimental modal analysis, using the Rational Fractional Polynomial method was developed for a small scale steel structure, and the result of this was compared with the result obtained from the model simulated in the software. Their vibration modes and natural frequencies obtained by numerical modeling were validated experimentally. Whit the numerical modeling of the modal analysis of a structure experimentally validated, attempted to analyze the dynamic behavior of the structure when it is subjected to a load due to a fluid-flow through a coupled fluid-structure problem. The results presented in this work show that the structure subjected to loads due to the fluid-flow, moves according to its vibration modes.