Mechanical properties of a high amylose content corn starch based film, gelatinized at low temperature

In the present study, a better knowledge of the influence of plasticizer content, storage relative humidity and film thickness on the mechanical properties of high amylose corn starch based films gelatinized at low temperature, is presented. The mechanical properties, tensile strength and percentage of elongation at break of high amylose corn starch films plasticized with glycerol were evaluated using tension tests. The films exhibited an increase in elongation and a decrease in tensile strength with increasing plasticizer concentration. When the glycerol level was high, some fissures were detected in the dry films, possible due to phase separation (starch-glycerol) phenomena. Film crystallinity is related to the reorganization capacity of the polymer chain, and thus the relative film crystallinity should increase with plasticizer content (glycerol and water). The mechanical properties were found to be strongly dependent on the water content due to the hydrophilic nature of starch films. The influence of moisture sorption on tensile strength was similar to that of plasticization with glycerol. The relationship between polymer chain mobility and water content explained this behavior. Elongation suffered a different effect and maximum values were reached at 45% relative humidity. The final drop in elongation was due to a softening of the structure at high relative humidity. The thicker the film the longer the drying time required, leading to greater relative crystallinity due to the corresponding increase in the possibility for chain reorganization. As a consequence, linear increases in tensile strength and elongation were observed with film thickness over the whole range studied (30 to 100 µm).

Saved in:
Bibliographic Details
Main Authors: Bertuzzi,Maria Alejandra, Gottifredi,Juan Carlos, Armada,Margarita
Format: Digital revista
Language:English
Published: Instituto de Tecnologia de Alimentos - ITAL 2012
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1981-67232012000300005
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present study, a better knowledge of the influence of plasticizer content, storage relative humidity and film thickness on the mechanical properties of high amylose corn starch based films gelatinized at low temperature, is presented. The mechanical properties, tensile strength and percentage of elongation at break of high amylose corn starch films plasticized with glycerol were evaluated using tension tests. The films exhibited an increase in elongation and a decrease in tensile strength with increasing plasticizer concentration. When the glycerol level was high, some fissures were detected in the dry films, possible due to phase separation (starch-glycerol) phenomena. Film crystallinity is related to the reorganization capacity of the polymer chain, and thus the relative film crystallinity should increase with plasticizer content (glycerol and water). The mechanical properties were found to be strongly dependent on the water content due to the hydrophilic nature of starch films. The influence of moisture sorption on tensile strength was similar to that of plasticization with glycerol. The relationship between polymer chain mobility and water content explained this behavior. Elongation suffered a different effect and maximum values were reached at 45% relative humidity. The final drop in elongation was due to a softening of the structure at high relative humidity. The thicker the film the longer the drying time required, leading to greater relative crystallinity due to the corresponding increase in the possibility for chain reorganization. As a consequence, linear increases in tensile strength and elongation were observed with film thickness over the whole range studied (30 to 100 µm).