Cryopreservation of Byrsonima intermedia embryos followed by room temperature thawing

Byrsonima intermedia is a shrub from the Brazilian Cerrado with medicinal properties. The storage of biological material at ultra-low temperatures (-196°C) is termed cryopreservation and represents a promising technique for preserving plant diversity. Thawing is a crucial step that follows cryopreservation. The aim of this work was to cryopreserve B. intermedia zygotic embryos and subsequently thaw them at room temperature in a solution rich in sucrose. The embryos were decontaminated and desiccated in a laminar airflow hood for 0-4 hours prior to plunging into liquid nitrogen. The embryo moisture content (% MC) during dehydration was assessed. Cryopreserved embryos were thawed in a solution rich in sucrose at room temperature, inoculated in a germination medium and maintained in a growth chamber. After 30 days, the embryo germination was evaluated. No significant differences were observed between the different embryo dehydration times, where they were dehydrated for at least one hour. Embryos with a MC between 34.3 and 20.3% were germinated after cryopreservation. In the absence of dehydration, all embryos died following cryopreservation. We conclude that B. intermedia zygotic embryos can be successfully cryopreserved and thawed at room temperature after at least one hour of dehydration in a laminar airflow bench.

Saved in:
Bibliographic Details
Main Authors: Silva,Luciano Coutinho, Paiva,Renato, Swennen,Rony, Andrè,Edwige, Panis,Bart
Format: Digital revista
Language:English
Published: Editora da Universidade Estadual de Maringá - EDUEM 2014
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-86212014000300006
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Byrsonima intermedia is a shrub from the Brazilian Cerrado with medicinal properties. The storage of biological material at ultra-low temperatures (-196°C) is termed cryopreservation and represents a promising technique for preserving plant diversity. Thawing is a crucial step that follows cryopreservation. The aim of this work was to cryopreserve B. intermedia zygotic embryos and subsequently thaw them at room temperature in a solution rich in sucrose. The embryos were decontaminated and desiccated in a laminar airflow hood for 0-4 hours prior to plunging into liquid nitrogen. The embryo moisture content (% MC) during dehydration was assessed. Cryopreserved embryos were thawed in a solution rich in sucrose at room temperature, inoculated in a germination medium and maintained in a growth chamber. After 30 days, the embryo germination was evaluated. No significant differences were observed between the different embryo dehydration times, where they were dehydrated for at least one hour. Embryos with a MC between 34.3 and 20.3% were germinated after cryopreservation. In the absence of dehydration, all embryos died following cryopreservation. We conclude that B. intermedia zygotic embryos can be successfully cryopreserved and thawed at room temperature after at least one hour of dehydration in a laminar airflow bench.