Characterisation of the optimal hydric interval for a Yellow Argisol cultivated with sugarcane on the coastal plains of Alagoas, Brazil

This work had as its objective to study the optimum water range (OWR) of a Yellow Argisol of the coastal plains, planted with sugarcane, when subjected to different levels of compaction. For the laboratory tests soil samples with a non-preserved structure were used, removed from depths of from 0.20 m to 0.40 m and 0.40 m to 0.60 m, representing the AB and Bt horizons respectively. The treatments consisted of different soil densities represented by specimens contained in volumetric rings. The critical densities of the AB and Bt horizons for samples of upturned soil, were 1.84 and 1.63 Mg m-3 respectively. In undisturbed soil a critical density of 1.63 and 1.64 Mg m-3 was observed for the same horizons. However, the soil density at which root development begins to be restricted was 1.61 Mg m-3 for samples of upturned soil, and 1.50 Mg m-3 for samples of undisturbed soil at a depth of from 0.20 to 0.40 m. From 0.40 to 0.60 m the critical density was 1.45 and 1.18 Mg m-3 for samples of upturned and undisturbed soil respectively. It can be concluded that upturning the soil increased the IHO of the AB and Bt horizons of the Yellow Argisol, compared to the undisturbed soil cultivated with sugarcane. The subsurface movement of the studied Argisol increases the IHO at higher densities, due to the increase in the critical density of the AB and Bt horizons, improving their hydro-mechanical behavior.

Saved in:
Bibliographic Details
Main Authors: Farias,Ismar Lima de, Pacheco,Edson Patto, Viégas,Pedro Roberto Almeida
Format: Digital revista
Language:English
Published: Universidade Federal do Ceará 2013
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-66902013000400002
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work had as its objective to study the optimum water range (OWR) of a Yellow Argisol of the coastal plains, planted with sugarcane, when subjected to different levels of compaction. For the laboratory tests soil samples with a non-preserved structure were used, removed from depths of from 0.20 m to 0.40 m and 0.40 m to 0.60 m, representing the AB and Bt horizons respectively. The treatments consisted of different soil densities represented by specimens contained in volumetric rings. The critical densities of the AB and Bt horizons for samples of upturned soil, were 1.84 and 1.63 Mg m-3 respectively. In undisturbed soil a critical density of 1.63 and 1.64 Mg m-3 was observed for the same horizons. However, the soil density at which root development begins to be restricted was 1.61 Mg m-3 for samples of upturned soil, and 1.50 Mg m-3 for samples of undisturbed soil at a depth of from 0.20 to 0.40 m. From 0.40 to 0.60 m the critical density was 1.45 and 1.18 Mg m-3 for samples of upturned and undisturbed soil respectively. It can be concluded that upturning the soil increased the IHO of the AB and Bt horizons of the Yellow Argisol, compared to the undisturbed soil cultivated with sugarcane. The subsurface movement of the studied Argisol increases the IHO at higher densities, due to the increase in the critical density of the AB and Bt horizons, improving their hydro-mechanical behavior.