Successional trajectory of the fouling community on a tropical upwelling ecosystem in southeast Rio de Janeiro, Brazil
Abstract The present study describes the successional trajectory of the fouling community in the upwelling region of Cabo Frio in southeastern Rio de Janeiro, Brazil. For 12 months, five PVC panels were sampled monthly by underwater photography to record the percent cover of fouling organisms, which allowed for the evaluation of the successional process through functional groups. The variability in the composition of the fouling community increased throughout the successional trajectory, creating a mosaic pattern. The identification of two associations after a year of observation, with one characterized by filamentous algae, Hydrozoa and Cirripedia and another mainly by articulated calcareous algae, shows that divergent trajectories can be observed even under the same environmental conditions. As an important seasonal factor of the local oceanographic characteristics, the upwelling events allowed for an environmental heterogeneity, and rejecting the classic orderly and directional succession model.
Main Authors: | , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Universidade de São Paulo, Instituto Oceanográfico
2015
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-87592015000200161 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract The present study describes the successional trajectory of the fouling community in the upwelling region of Cabo Frio in southeastern Rio de Janeiro, Brazil. For 12 months, five PVC panels were sampled monthly by underwater photography to record the percent cover of fouling organisms, which allowed for the evaluation of the successional process through functional groups. The variability in the composition of the fouling community increased throughout the successional trajectory, creating a mosaic pattern. The identification of two associations after a year of observation, with one characterized by filamentous algae, Hydrozoa and Cirripedia and another mainly by articulated calcareous algae, shows that divergent trajectories can be observed even under the same environmental conditions. As an important seasonal factor of the local oceanographic characteristics, the upwelling events allowed for an environmental heterogeneity, and rejecting the classic orderly and directional succession model. |
---|