Selection of optimal process parameters for minimizing burr size in drilling using Taguchi's quality loss function approach

The exit burr in drilling degrades the precision of products and causes additional cost of deburring. Therefore, it is essential to minimize burr size at the exit of holes in drilling at the manufacturing stage. Taguchi's quality loss function approach, a multi-response optimization method, has been employed to determine the best combination values of cutting speed, feed, point angle and lip clearance angle for specified drill diameters to simultaneously minimize burr height and burr thickness during drilling of AISI 316L stainless steel workpieces. The experiments were planned as per L9 orthogonal array and multi-response signal to noise (S/N) ratio was applied to measure the performance characteristics. Analysis of means (ANOM) and analysis of variance (ANOVA) were performed to determine the optimal levels and to identify the level of importance of parameters. The confirmation tests with the optimal levels of parameters were carried out to illustrate the effectiveness of Taguchi optimization.

Saved in:
Bibliographic Details
Main Authors: Gaitonde,V. N., Karnik,S. R.
Format: Digital revista
Language:English
Published: Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM 2012
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782012000300003
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The exit burr in drilling degrades the precision of products and causes additional cost of deburring. Therefore, it is essential to minimize burr size at the exit of holes in drilling at the manufacturing stage. Taguchi's quality loss function approach, a multi-response optimization method, has been employed to determine the best combination values of cutting speed, feed, point angle and lip clearance angle for specified drill diameters to simultaneously minimize burr height and burr thickness during drilling of AISI 316L stainless steel workpieces. The experiments were planned as per L9 orthogonal array and multi-response signal to noise (S/N) ratio was applied to measure the performance characteristics. Analysis of means (ANOM) and analysis of variance (ANOVA) were performed to determine the optimal levels and to identify the level of importance of parameters. The confirmation tests with the optimal levels of parameters were carried out to illustrate the effectiveness of Taguchi optimization.