A vibroacoustic application of modeling and control of linear parameter-varying systems

This paper applies recent advances in both modeling and control of Linear Parameter-Varying (LPV) systems to a vibroacoustic setup whose dynamics is highly sensitive to variations in the temperature. Based on experimental data, an LPV model is derived for this system using the State-space Model Interpolation of Local Estimates (SMILE) technique. This modeling technique interpolates linear time-invariant models estimated at distinct operating conditions of the system (in this case, different temperatures). Using the obtained LPV model, gain-scheduled and robust multiobjective H2/H∞ state feedback controllers are designed such that can consider a priori known bounds on the rate of parameter variation. Numerical simulations using the closed-loop systems are performed to validate the controllers and to show the advantages and versatility of the proposed techniques.

Saved in:
Bibliographic Details
Main Authors: De Caigny,Jan, Camino,Juan F., Oliveira,Ricardo C. L. F., Peres,Pedro L. D., Swevers,Jan
Format: Digital revista
Language:English
Published: Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM 2010
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782010000400002
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper applies recent advances in both modeling and control of Linear Parameter-Varying (LPV) systems to a vibroacoustic setup whose dynamics is highly sensitive to variations in the temperature. Based on experimental data, an LPV model is derived for this system using the State-space Model Interpolation of Local Estimates (SMILE) technique. This modeling technique interpolates linear time-invariant models estimated at distinct operating conditions of the system (in this case, different temperatures). Using the obtained LPV model, gain-scheduled and robust multiobjective H2/H∞ state feedback controllers are designed such that can consider a priori known bounds on the rate of parameter variation. Numerical simulations using the closed-loop systems are performed to validate the controllers and to show the advantages and versatility of the proposed techniques.