Hollow cathode discharge: application of a deposition treatment in the iron sintering
The influence of a previous deposition treatment on the final amount of alloying elements (Cr and Ni) deposited and diffused into the surface of iron parts sintered in hollow cathode discharge (HCD) was studied. Cylindrical pure iron pressed samples, being a central cathode, were placed concentrically in the interior of an AISI 310 steel machine-made outer cathode, resulting in a 6 mm inter-cathode radial spacing. The study was divided in two steps: a) deposition treatment with the outer cathode acting as target and the iron sample acting as substrate (1123K -850 ºC- and 60 minutes deposition temperature and time, respectively); and b) deposition treatment plus HCD sintering (1423K -1150 ºC- and 60 minutes sintering temperature and time, respectively). The electrical discharge was generated using a pulsed voltage power source. The results indicate the presence of 6.5 at.% Cr and 6.9 at.% Ni on the samples surface. The concentration profiles were mathematically treated to quantify the actual amounts of Cr and Ni deposited on and diffused into the samples, and the integration of the fitted equations yielded the calculated areas of 133 (µm × at.% Cr) and 105 (µm × at.% Ni), respectively.
Main Authors: | , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
2008
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782008000200007 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The influence of a previous deposition treatment on the final amount of alloying elements (Cr and Ni) deposited and diffused into the surface of iron parts sintered in hollow cathode discharge (HCD) was studied. Cylindrical pure iron pressed samples, being a central cathode, were placed concentrically in the interior of an AISI 310 steel machine-made outer cathode, resulting in a 6 mm inter-cathode radial spacing. The study was divided in two steps: a) deposition treatment with the outer cathode acting as target and the iron sample acting as substrate (1123K -850 ºC- and 60 minutes deposition temperature and time, respectively); and b) deposition treatment plus HCD sintering (1423K -1150 ºC- and 60 minutes sintering temperature and time, respectively). The electrical discharge was generated using a pulsed voltage power source. The results indicate the presence of 6.5 at.% Cr and 6.9 at.% Ni on the samples surface. The concentration profiles were mathematically treated to quantify the actual amounts of Cr and Ni deposited on and diffused into the samples, and the integration of the fitted equations yielded the calculated areas of 133 (µm × at.% Cr) and 105 (µm × at.% Ni), respectively. |
---|