A solução cartesiana da quadratura do círculo

Apesar do problema da quadratura do círculo, isto é, o problema de construir um quadrado tendo a mesma área que a de um círculo dado, permanecer um problema aberto entre os matemáticos do começo do século xvii, e de Descartes ter até mesmo declarado a impossibilidade de sua solução, ele próprio havia fornecido uma solução, datada dos anos de 1625-1628. Neste artigo, examinarei essa solução comparando-a a uma análise feita por Euler um século mais tarde e também a uma solução conhecida desde os antigos e apresentada por Pappus. Interrogar-me-ei, em seguida, sobre as razões que conduziram Descartes a excluir as duas construções por serem inaceitáveis em relação ao ideal de exatidão explicitado em A geometria de 1637.

Saved in:
Bibliographic Details
Main Author: Crippa,Davide
Format: Digital revista
Language:Portuguese
Published: Universidade de São Paulo, Departamento de Filosofia 2010
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-31662010000400005
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Apesar do problema da quadratura do círculo, isto é, o problema de construir um quadrado tendo a mesma área que a de um círculo dado, permanecer um problema aberto entre os matemáticos do começo do século xvii, e de Descartes ter até mesmo declarado a impossibilidade de sua solução, ele próprio havia fornecido uma solução, datada dos anos de 1625-1628. Neste artigo, examinarei essa solução comparando-a a uma análise feita por Euler um século mais tarde e também a uma solução conhecida desde os antigos e apresentada por Pappus. Interrogar-me-ei, em seguida, sobre as razões que conduziram Descartes a excluir as duas construções por serem inaceitáveis em relação ao ideal de exatidão explicitado em A geometria de 1637.