Physiological and biochemical traits as tools to screen sensitive and resistant varieties of tomatoes exposed to salt stress
The present study was conducted to evaluate salt tolerance in seven different pure-line cultivars of tomato (Solanum lycopersicum L.) viz. K-21, Pusa Ruby, Pusa Gorav, Hera research, Selection N5, PKM-1 and S-22 based on several physiological and biochemical traits. Seedlings were transplanted to the pots, being exposed to different salinity levels in the form of NaCl (0, 50, 100, or 150 mM) at a 35-day stage of growth for six days. The plants exposed to salt stress presented a significant decline in growth, photosynthetic parameters, maximum quantum yield of PSII and leaf water relations, which were drastically reduced in variety S-22, while variety K-21 was the least affected. Electrolyte leakage was superior in proportion to an increase in salinity levels. Proline content and activity of antioxidant enzymes catalase, peroxidase, and superoxide dismutase were found maximum in variety K-21. Almost all the growth and physiological and biochemical traits had a significant genotypic variation, indicating that these parameters could be used as novel screening criteria for selecting the tolerant and sensitive cultivars exposed to salt stress.
Main Authors: | , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Brazilian Journal of Plant Physiology
2012
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1677-04202012000400007 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present study was conducted to evaluate salt tolerance in seven different pure-line cultivars of tomato (Solanum lycopersicum L.) viz. K-21, Pusa Ruby, Pusa Gorav, Hera research, Selection N5, PKM-1 and S-22 based on several physiological and biochemical traits. Seedlings were transplanted to the pots, being exposed to different salinity levels in the form of NaCl (0, 50, 100, or 150 mM) at a 35-day stage of growth for six days. The plants exposed to salt stress presented a significant decline in growth, photosynthetic parameters, maximum quantum yield of PSII and leaf water relations, which were drastically reduced in variety S-22, while variety K-21 was the least affected. Electrolyte leakage was superior in proportion to an increase in salinity levels. Proline content and activity of antioxidant enzymes catalase, peroxidase, and superoxide dismutase were found maximum in variety K-21. Almost all the growth and physiological and biochemical traits had a significant genotypic variation, indicating that these parameters could be used as novel screening criteria for selecting the tolerant and sensitive cultivars exposed to salt stress. |
---|