SENSOR FOR PREDNISOLONE DETECTION IN SPORTS DOPING

ABSTRACT Introduction: Prednisolone causes pro-inflammatory impulses to be inhibited and anti-inflammatory signals to be promoted. As a result, it alters how the body's immune system reacts to certain diseases. The World Anti-Doping Agency, however, has banned SNP and other glucocorticosteroids. An electrochemical sensor can be developed using a gold nanocomposite, polypyrrole nanoparticles and synthesized carbon nanotubes (Au-PPy NPs@CNTs). Objective: Develop an electrochemical sensor to detect prednisolone. Method: Au-PPy NPs@CNTs nanocomposite was chemically synthesized with a modified glassy carbon electrode (GCE) surface. Results: According to SEM data, the nanocomposite was composed of amorphous Au NPs, and PPy NPs deposited in tubes strongly entangled in a CNTs network. The wide linear range and low detection limit of the Au-PPy NPs@CNTs/GCE as prednisolone sensors were attributed to the combined catalytic performance of the Au and PPy NPs@CNTs nanostructures. Conclusion: The results of prednisolone detection in each specimen using the amperometric method indicated good accuracy. The accuracy and precision of Au-PPy NPs@CNTs/GCE for prednisolone detection were explored in blood samples from 5 young athletes aged 20-24 years who used prednisolone tablets (RSD less than 4.25%). In addition to monitoring prednisolone concentrations in athletes’ serum, Au-PPy NPs@CNTs/GCE can be used as a reliable prednisolone sensor. Level of evidence II; Therapeutic studies - investigating treatment outcomes.

Saved in:
Bibliographic Details
Main Authors: Wang,Wenping, Wazir,Mohd Rozilee Wazir Norjali, Geok,Soh Kim, Gao,Yongqi, Xiong,Wei
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Medicina do Exercício e do Esporte 2023
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922023000100299
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Introduction: Prednisolone causes pro-inflammatory impulses to be inhibited and anti-inflammatory signals to be promoted. As a result, it alters how the body's immune system reacts to certain diseases. The World Anti-Doping Agency, however, has banned SNP and other glucocorticosteroids. An electrochemical sensor can be developed using a gold nanocomposite, polypyrrole nanoparticles and synthesized carbon nanotubes (Au-PPy NPs@CNTs). Objective: Develop an electrochemical sensor to detect prednisolone. Method: Au-PPy NPs@CNTs nanocomposite was chemically synthesized with a modified glassy carbon electrode (GCE) surface. Results: According to SEM data, the nanocomposite was composed of amorphous Au NPs, and PPy NPs deposited in tubes strongly entangled in a CNTs network. The wide linear range and low detection limit of the Au-PPy NPs@CNTs/GCE as prednisolone sensors were attributed to the combined catalytic performance of the Au and PPy NPs@CNTs nanostructures. Conclusion: The results of prednisolone detection in each specimen using the amperometric method indicated good accuracy. The accuracy and precision of Au-PPy NPs@CNTs/GCE for prednisolone detection were explored in blood samples from 5 young athletes aged 20-24 years who used prednisolone tablets (RSD less than 4.25%). In addition to monitoring prednisolone concentrations in athletes’ serum, Au-PPy NPs@CNTs/GCE can be used as a reliable prednisolone sensor. Level of evidence II; Therapeutic studies - investigating treatment outcomes.