Detection of Legionella pneumophila in water and biofilm samples by culture and molecular methods from man-made systems in São Paulo - Brazil
Legionella pneumophila is a pathogenic bacteria associated to aquatic habitat of natural and artificial environments. Clinical cases of legionellosis have been reported in Brazil but there is a lack of information about the incidence and concentration of this bacterium in environmental sources. Thus, the present study was designed to evaluate the occurrence of legionellae in São Paulo city, Brazil, using different methods of detection and identification. Sixty-seven water and biofilm samples from natural reservoirs and man-made systems were collected and analyzed for the presence of Legionella spp by culturing onto a selective medium, coculture in axenic free-living amoebae and direct fluorescent antibody (DFA) assay. Results showed that freshwater of reservoirs did not contain legionellae, Legionella pneumophila was isolated from man-made systems, with predominance of Legionella pneumophila serogroup 1 strains. Although there was no statistical difference among the proposed detection methods, the plate culture method yielded a higher number of L. pneumophila positive samples, followed by amoebic coculture procedure and direct fluorescent antibody assay. Results of PCR and sequencing reactions revealed that application of macrophage infectivity potentiator gene as a molecular marker was an important tool for the identification of environmental isolates of L. pneumophila. The agreement among the three detection methods-when all methods yielded similar results- and the prevalence of a single Legionella species in the sampled man-made systems could suggest that the occurrence of this bacterium had been influenced by the higher concentration of metallic ions dissociated in water of those systems than in natural reservoirs. Thus, the results of this study revealed that the water of man-made systems in Sao Paulo may serve as a reservoir for L. pneumophila and other microorganism, including free-living protozoans.
Main Authors: | , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Sociedade Brasileira de Microbiologia
2007
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822007000400029 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Legionella pneumophila is a pathogenic bacteria associated to aquatic habitat of natural and artificial environments. Clinical cases of legionellosis have been reported in Brazil but there is a lack of information about the incidence and concentration of this bacterium in environmental sources. Thus, the present study was designed to evaluate the occurrence of legionellae in São Paulo city, Brazil, using different methods of detection and identification. Sixty-seven water and biofilm samples from natural reservoirs and man-made systems were collected and analyzed for the presence of Legionella spp by culturing onto a selective medium, coculture in axenic free-living amoebae and direct fluorescent antibody (DFA) assay. Results showed that freshwater of reservoirs did not contain legionellae, Legionella pneumophila was isolated from man-made systems, with predominance of Legionella pneumophila serogroup 1 strains. Although there was no statistical difference among the proposed detection methods, the plate culture method yielded a higher number of L. pneumophila positive samples, followed by amoebic coculture procedure and direct fluorescent antibody assay. Results of PCR and sequencing reactions revealed that application of macrophage infectivity potentiator gene as a molecular marker was an important tool for the identification of environmental isolates of L. pneumophila. The agreement among the three detection methods-when all methods yielded similar results- and the prevalence of a single Legionella species in the sampled man-made systems could suggest that the occurrence of this bacterium had been influenced by the higher concentration of metallic ions dissociated in water of those systems than in natural reservoirs. Thus, the results of this study revealed that the water of man-made systems in Sao Paulo may serve as a reservoir for L. pneumophila and other microorganism, including free-living protozoans. |
---|