Retention of oral microorganisms on conventional and resin-modified glass-ionomer cements

Secondary caries are a worldwide public and socioeconomic problem. The placement of restorations can lead to the development of environmental conditions favorable to microbial colonization, especially on the tooth/restoration interface, which is a predisposing factor for secondary caries. The aim of this study was to evaluate microbial retention on conventional (Chelon-Fil and Vidrion R) and resin-modified (Vitremer and Fuji II LC) glass-ionomer cements, in situ, using a hybrid composite resin (Z100) as a control. Twelve volunteers wore Hawley appliances with specimens made of all tested filling materials for 7 days. The specimens were then removed from the appliances and transferred to tubes containing 2.0 ml of Ringer-PRAS. Microorganisms from the samples were inoculated onto blood agar and Mitis Salivarius Bacitracin agar and incubated under anaerobiosis (90% N2, 10% CO2), at 37°C, for 10 and 2 days, respectively. The resin-modified glass-ionomer cements and the composite resin retained the same levels of microorganisms on their surfaces. The resin-modified glass-ionomers retained less mutans streptococci than the composite resin and conventional glass-ionomer cements. The conventional glass-ionomer cements retained less mutans streptococci than the composite resin, but that difference was not statistically significant.

Saved in:
Bibliographic Details
Main Authors: PEDRINI,Denise, GAETTI-JARDIM JÚNIOR,Elerson, VASCONCELOS,Andréia Coelho de
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Pesquisa Odontológica e Faculdade de Odontologia da Universidade de São Paulo 2001
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-74912001000300004
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Secondary caries are a worldwide public and socioeconomic problem. The placement of restorations can lead to the development of environmental conditions favorable to microbial colonization, especially on the tooth/restoration interface, which is a predisposing factor for secondary caries. The aim of this study was to evaluate microbial retention on conventional (Chelon-Fil and Vidrion R) and resin-modified (Vitremer and Fuji II LC) glass-ionomer cements, in situ, using a hybrid composite resin (Z100) as a control. Twelve volunteers wore Hawley appliances with specimens made of all tested filling materials for 7 days. The specimens were then removed from the appliances and transferred to tubes containing 2.0 ml of Ringer-PRAS. Microorganisms from the samples were inoculated onto blood agar and Mitis Salivarius Bacitracin agar and incubated under anaerobiosis (90% N2, 10% CO2), at 37°C, for 10 and 2 days, respectively. The resin-modified glass-ionomer cements and the composite resin retained the same levels of microorganisms on their surfaces. The resin-modified glass-ionomers retained less mutans streptococci than the composite resin and conventional glass-ionomer cements. The conventional glass-ionomer cements retained less mutans streptococci than the composite resin, but that difference was not statistically significant.