Evaluation of a Combined System Based on an Upflow Anaerobic Sludge Blanket Reactor (UASB) and Shallow Polishing Pond (SPP) for Textile Effluent Treatment

Abstract Color removal from textile effluents was evaluated using a laboratory-combined process based on an upflow anaerobic sludge blanket (UASB) reactor followed by a shallow polishing pond (SPP). The anaerobic reactor was fed with a real textile effluent, diluted 10-times in a 350 mg/L solution of pre-treated residual yeast extract from a brewery industry as nutrient source. The parameters color, COD, N-NH3 and toxicity were monitored throughout 45 days of operation. According to the results, decolorization and COD removal were highest in the anaerobic step, whereas the effluent was polished in the SPP unit. The overall efficiency of the complete UASB-SPP system for COD and color were 88 and 62%, respectively. Moreover, the N-NH3 generated by the residual yeast extract ammonification was below 5 mg/L for the final effluent. Finally, no toxicity was detected after the treatment steps, as shown by the Vibrio fischeri microscale assay.

Saved in:
Bibliographic Details
Main Authors: Bahia,Marina, Borges,Tatiane Aparecida, Passos,Fabiana, Aquino,Sérgio Francisco de, Silva,Silvana de Queiroz
Format: Digital revista
Language:English
Published: Instituto de Tecnologia do Paraná - Tecpar 2020
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132020000100708
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Color removal from textile effluents was evaluated using a laboratory-combined process based on an upflow anaerobic sludge blanket (UASB) reactor followed by a shallow polishing pond (SPP). The anaerobic reactor was fed with a real textile effluent, diluted 10-times in a 350 mg/L solution of pre-treated residual yeast extract from a brewery industry as nutrient source. The parameters color, COD, N-NH3 and toxicity were monitored throughout 45 days of operation. According to the results, decolorization and COD removal were highest in the anaerobic step, whereas the effluent was polished in the SPP unit. The overall efficiency of the complete UASB-SPP system for COD and color were 88 and 62%, respectively. Moreover, the N-NH3 generated by the residual yeast extract ammonification was below 5 mg/L for the final effluent. Finally, no toxicity was detected after the treatment steps, as shown by the Vibrio fischeri microscale assay.