Genetic and environmental effects on sexual precocity traits in Nellore cattle
The objective of this study was to estimate the heritability of probability of early pregnancy (PEP) and scrotal circumference (SC) and the genetic correlation between these traits in Nellore cattle. PEP records from 11,696 Nellore females born between 1983 and 2001 were analyzed. PEP was assumed to be one for females that effectively bred in the herd (19.84%) and zero for those discarded before first calving (80.16%). The model used to study PEP included the effects of contemporary group, age of dam at calving and heifer weaning age, direct additive genetic effects, and residual effects. For SC, 9335 records were analyzed considering the effect of contemporary group, direct additive genetic effects and residual effects. Covariance components were estimated by Gibbs sampling applied to a two-trait sire model, using a threshold model for PEP and a linear model for SC. Estimated mean heritability was 0.47 ± 0.05 for PEP and 0.27 ± 0.03 for SC, and the genetic correlation between traits was 0.12 ± 0.20. These results indicated the existence of additive genetic variation for PEP and this trait should therefore respond to selection. The estimated genetic correlation between PEP and SC indicated a low, but favorable, association. Thus, SC might be used together with PEP in genetic evaluations of sexual precocity. This procedure would increase the accuracy of predicting expected progeny differences for PEP.
Main Authors: | , , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Sociedade Brasileira de Zootecnia
2009
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982009000800012 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objective of this study was to estimate the heritability of probability of early pregnancy (PEP) and scrotal circumference (SC) and the genetic correlation between these traits in Nellore cattle. PEP records from 11,696 Nellore females born between 1983 and 2001 were analyzed. PEP was assumed to be one for females that effectively bred in the herd (19.84%) and zero for those discarded before first calving (80.16%). The model used to study PEP included the effects of contemporary group, age of dam at calving and heifer weaning age, direct additive genetic effects, and residual effects. For SC, 9335 records were analyzed considering the effect of contemporary group, direct additive genetic effects and residual effects. Covariance components were estimated by Gibbs sampling applied to a two-trait sire model, using a threshold model for PEP and a linear model for SC. Estimated mean heritability was 0.47 ± 0.05 for PEP and 0.27 ± 0.03 for SC, and the genetic correlation between traits was 0.12 ± 0.20. These results indicated the existence of additive genetic variation for PEP and this trait should therefore respond to selection. The estimated genetic correlation between PEP and SC indicated a low, but favorable, association. Thus, SC might be used together with PEP in genetic evaluations of sexual precocity. This procedure would increase the accuracy of predicting expected progeny differences for PEP. |
---|