Glycidyl Methacrylate-ethylene Glycol Dimethacrylate Copolymers with Varied Pore Structures Prepared with Different Reaction Parameters

Abstract Copolymers based on glycidyl methacrylate (GMA) are considered attractive as sorbents because the epoxy groups can be easily converted into other groups. Studies involving the influence of the synthesis parameters on the morphological characteristics of these copolymers are scarce. This work investigates the synthesis of copolymers of poly(GMA-co-EGDMA) with different porosity degrees obtained by varying the synthesis parameters. GMA-EGDMA copolymers were synthesized by suspension polymerization employing varied conditions and characterized by measuring apparent density, surface area and pore volume distribution, optical and scanning electron microcopies, FT-IR, thermogravimetry and titration of epoxide rings. The copolymer with highest surface area and pore volume (260.4 m2/g and 0.5 cm3/g) was prepared employing cyclohexane as diluent, 80% EGDMA in monomeric composition and 100% of dilution degree. There was a relation between the epoxide content of the copolymers determined by titration and the residue content formed in the first decomposition stage.

Saved in:
Bibliographic Details
Main Authors: Costa,Luciana C., Monteiro,Rafaela C., Castro,Helena M. A., Ribeiro,Tatiane S., Oliveira,Mirian A., Torquato,Ezaine C. C., Arcanjo,Maria E., Marques,Monica R. C.
Format: Digital revista
Language:English
Published: ABM, ABC, ABPol 2020
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392020000300215
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Copolymers based on glycidyl methacrylate (GMA) are considered attractive as sorbents because the epoxy groups can be easily converted into other groups. Studies involving the influence of the synthesis parameters on the morphological characteristics of these copolymers are scarce. This work investigates the synthesis of copolymers of poly(GMA-co-EGDMA) with different porosity degrees obtained by varying the synthesis parameters. GMA-EGDMA copolymers were synthesized by suspension polymerization employing varied conditions and characterized by measuring apparent density, surface area and pore volume distribution, optical and scanning electron microcopies, FT-IR, thermogravimetry and titration of epoxide rings. The copolymer with highest surface area and pore volume (260.4 m2/g and 0.5 cm3/g) was prepared employing cyclohexane as diluent, 80% EGDMA in monomeric composition and 100% of dilution degree. There was a relation between the epoxide content of the copolymers determined by titration and the residue content formed in the first decomposition stage.