Application of SnO2 Nanoparticles and Zeolites in Coal Mine Methane Sensors

We evaluated solid-state sensors (MOS) manufactured using nanostructured tin oxide (SnO2) obtained by different synthesis methods for selectivity, response and repeatability at different operating temperatures and methane concentrations. In addition, Zeolite 13X pellets were placed in front of the sensors to improve CH4 selectivity in the presence of CO2. The palladium doped sensor (1.4% w/w) showed the highest sensitivity at 80 ºC (83%) and shorter response times (16 s), whereas non-doped sensors exhibited the best sensitivity (78%) and response times (14 s) for those with smaller particle size (8 nm). Zeolite 13X pellets proved to be efficient at making the sensor more selective for CH4 in the presence of CO2.

Saved in:
Bibliographic Details
Main Authors: Abruzzi,Rafael Colombo, Pires,Marçal José Rodrigues, Dedavid,Berenice Anina, Galli,Camila Fensterseifer
Format: Digital revista
Language:English
Published: ABM, ABC, ABPol 2019
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000700204
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We evaluated solid-state sensors (MOS) manufactured using nanostructured tin oxide (SnO2) obtained by different synthesis methods for selectivity, response and repeatability at different operating temperatures and methane concentrations. In addition, Zeolite 13X pellets were placed in front of the sensors to improve CH4 selectivity in the presence of CO2. The palladium doped sensor (1.4% w/w) showed the highest sensitivity at 80 ºC (83%) and shorter response times (16 s), whereas non-doped sensors exhibited the best sensitivity (78%) and response times (14 s) for those with smaller particle size (8 nm). Zeolite 13X pellets proved to be efficient at making the sensor more selective for CH4 in the presence of CO2.