Effects of Geometrical Feature on Microstructures and Mechanical Properties of Refill Friction Stir Spot Welding 6061 Aluminum Alloy

Refill friction stir spot welding (refill FSSW) is a solid state joining technology developed and patented by Helmholtz-Zentrum Geesthacht. Refill FSSW is a welding process suitable for spot joining lightweight materials in similar and dissimilar joint configuration. The result is a spot welded in lap configuration with minimal material loss and a flat surface with no keyhole. In the present study, refill FSSW was applied to join the similar 6061 aluminum alloy sheet with 1.25 mm thickness. The objective of this work is to investigate the influence of the hook on the microstructure and mechanical properties of the weld. The hook is a geometrical feature, formed as a result of the upward bending of the sheet interface during the sleeve plunge and retraction during welding. The weld strength had a negative correlation with the hook height, however it was concluded that the shape of hook changes according to the combination of process parameters. The highest value of the lap shear corresponded to the smallest hook height.

Saved in:
Bibliographic Details
Main Authors: Fernandes,Camila Albuquerque, Urtiga Filho,Severino Leopoldino, Suhuddin,Uceu, Santos,Jorge Fernandez dos
Format: Digital revista
Language:English
Published: ABM, ABC, ABPol 2019
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000600213
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Refill friction stir spot welding (refill FSSW) is a solid state joining technology developed and patented by Helmholtz-Zentrum Geesthacht. Refill FSSW is a welding process suitable for spot joining lightweight materials in similar and dissimilar joint configuration. The result is a spot welded in lap configuration with minimal material loss and a flat surface with no keyhole. In the present study, refill FSSW was applied to join the similar 6061 aluminum alloy sheet with 1.25 mm thickness. The objective of this work is to investigate the influence of the hook on the microstructure and mechanical properties of the weld. The hook is a geometrical feature, formed as a result of the upward bending of the sheet interface during the sleeve plunge and retraction during welding. The weld strength had a negative correlation with the hook height, however it was concluded that the shape of hook changes according to the combination of process parameters. The highest value of the lap shear corresponded to the smallest hook height.