Physical and Mechanical Properties of Polymer Composites with High Content of Wastes Including Boron

In this study, we studied the physical and mechanical properties of polymer composite with wastes that incorporating boron. The polymer composites were produced with epoxy based resin and wastes as mineral additive. The wastes were added to mixtures in different ratio by replacing the resin from 0 to 66% by weight. Slump-flow and viscosity tests are carried out on fresh samples after mixing. Composites were cured in air condition and they were de-molded after 24 hours. They gain ultimate strength after 7 days. Therefore, tests for characteristics were performed on 7 aged specimens. On the polymer composite samples, compressive strength, flexural strength, wear resistance, water absorption and density tests were performed. As a result, addition of the wastes that including boron increased the compressive strength of polymer composites; however, it made the composites more brittle material with low flexural strength.

Saved in:
Bibliographic Details
Main Authors: Uygunoglu,Tayfun, Gunes,Ibrahim, Brostow,Witold
Format: Digital revista
Language:English
Published: ABM, ABC, ABPol 2015
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000601188
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we studied the physical and mechanical properties of polymer composite with wastes that incorporating boron. The polymer composites were produced with epoxy based resin and wastes as mineral additive. The wastes were added to mixtures in different ratio by replacing the resin from 0 to 66% by weight. Slump-flow and viscosity tests are carried out on fresh samples after mixing. Composites were cured in air condition and they were de-molded after 24 hours. They gain ultimate strength after 7 days. Therefore, tests for characteristics were performed on 7 aged specimens. On the polymer composite samples, compressive strength, flexural strength, wear resistance, water absorption and density tests were performed. As a result, addition of the wastes that including boron increased the compressive strength of polymer composites; however, it made the composites more brittle material with low flexural strength.