ECAE processed NiTi shape memory alloy

The current work evaluated the microstructures and martensitic transformation temperatures of NiTi shape memory alloy (SMA) deformed by equal channel angular extrusion (ECAE). The Ti-55.27wt.%Ni alloy was processed by 1 ECAE pass at 250 °C using a die with an intersection angle of 120°. After processing, samples were annealed at 300 °C, 400 °C and 500 °C for 1h to evaluate the microstructural changes. Microstructural characterization was performed by scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) device, and Vickers hardness measurement. Martensitic transformations temperatures were analyzed by differential scanning calorimetry (DSC). Results show that the annealing treatments presented no significant change in the microstructure of the ECAE processed samples. Meanwhile, the DSC curves corresponding to the annealing treatments performed at 300 °C and 400 °C show two step martensitic transformation related to B2→R→B19'. For the annealing at 500 °C, the martensitic transformation temperatures returned to the ST condition, indicating a reduction of the processing defects.

Saved in:
Bibliographic Details
Main Authors: Lucas,Fernanda Lídia Carvalho, Guido,Vanessa, Käfer,Karine Andrea, Bernardi,Heide Heloise, Otubo,Jorge
Format: Digital revista
Language:English
Published: ABM, ABC, ABPol 2014
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392014000700030
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The current work evaluated the microstructures and martensitic transformation temperatures of NiTi shape memory alloy (SMA) deformed by equal channel angular extrusion (ECAE). The Ti-55.27wt.%Ni alloy was processed by 1 ECAE pass at 250 °C using a die with an intersection angle of 120°. After processing, samples were annealed at 300 °C, 400 °C and 500 °C for 1h to evaluate the microstructural changes. Microstructural characterization was performed by scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) device, and Vickers hardness measurement. Martensitic transformations temperatures were analyzed by differential scanning calorimetry (DSC). Results show that the annealing treatments presented no significant change in the microstructure of the ECAE processed samples. Meanwhile, the DSC curves corresponding to the annealing treatments performed at 300 °C and 400 °C show two step martensitic transformation related to B2→R→B19'. For the annealing at 500 °C, the martensitic transformation temperatures returned to the ST condition, indicating a reduction of the processing defects.