Influence of vinyl acetate-versatic vinylester copolymer on the microstructural characteristics of cement pastes

To understand the principles of polymer modification and its interference in the formation of some phases of Portland cement composites, several techniques are adopted such as Fourier Transform Infrared Spectroscopy and Thermogravimetric Analysis. In this study, these techniques were adopted to verify the influence of VA/VeoVA copolymer in seven pastes of high-early-strength portland cement twenty-eight days old, being four pastes with different polymer content and the same water/cement ratio, and the other three with extra water content increased by polymer content. In addition, scanning electronic microscopy was employed to verify the formation of copolymer film. The results showed possible interaction between acetate anion from the partial hydrolysis of copolymer and Ca++ ion from C2S and C3S hydration. Moreover, the magnitude of the decrease of portlandite formation is directly affected by water/cement ratio. By SEM analyses, the formation of two matrices, being one organic and the other inorganic, was also observed.

Saved in:
Bibliographic Details
Main Authors: Gomes,Carlos Eduardo Marmorato, Ferreira,Osny Pellegrino, Fernandes,Mauro Roberto
Format: Digital revista
Language:English
Published: ABM, ABC, ABPol 2005
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392005000100010
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To understand the principles of polymer modification and its interference in the formation of some phases of Portland cement composites, several techniques are adopted such as Fourier Transform Infrared Spectroscopy and Thermogravimetric Analysis. In this study, these techniques were adopted to verify the influence of VA/VeoVA copolymer in seven pastes of high-early-strength portland cement twenty-eight days old, being four pastes with different polymer content and the same water/cement ratio, and the other three with extra water content increased by polymer content. In addition, scanning electronic microscopy was employed to verify the formation of copolymer film. The results showed possible interaction between acetate anion from the partial hydrolysis of copolymer and Ca++ ion from C2S and C3S hydration. Moreover, the magnitude of the decrease of portlandite formation is directly affected by water/cement ratio. By SEM analyses, the formation of two matrices, being one organic and the other inorganic, was also observed.