Radiopacity and microhardness changes and effect of X-ray operating voltage in resin-based materials before and after the expiration date

This study observed alteration in the radiopacity and microhardness of expired resin-based materials compared to non-expired materials and the operating characteristics of the X-ray source used. Five 2 mm-thick cured specimens were prepared for each material: composite resins (P60®, Z100®), and a compomer (Dyract AP®). Radiopacity of the specimens was evaluated comparing the density of the resin-based material to an equivalent (mm) density of a 99.5% pure aluminum step wedge using a transmission densitometer. Surface microhardness measurements were carried out using a calibrated Vickers indenter on three different points of the same surface. ANOVA and Tukey tests (pre-set alpha = 0.05) revealed that expired materials showed no significant change in radiopacity. One material (Filtek P60) demonstrated lower radiopacity with lower KVp. Change in microhardness wa s statistically significant for Z100: for this material, the microhardness after expiration was significantly lower than before the expiration date.

Saved in:
Bibliographic Details
Main Authors: Tirapelli,Camila, Panzeri,Fernanda de Carvalho, Panzeri,Heitor, Pardini,Luiz Carlos, Zaniquelli,Osvaldo
Format: Digital revista
Language:English
Published: ABM, ABC, ABPol 2004
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392004000300006
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study observed alteration in the radiopacity and microhardness of expired resin-based materials compared to non-expired materials and the operating characteristics of the X-ray source used. Five 2 mm-thick cured specimens were prepared for each material: composite resins (P60®, Z100®), and a compomer (Dyract AP®). Radiopacity of the specimens was evaluated comparing the density of the resin-based material to an equivalent (mm) density of a 99.5% pure aluminum step wedge using a transmission densitometer. Surface microhardness measurements were carried out using a calibrated Vickers indenter on three different points of the same surface. ANOVA and Tukey tests (pre-set alpha = 0.05) revealed that expired materials showed no significant change in radiopacity. One material (Filtek P60) demonstrated lower radiopacity with lower KVp. Change in microhardness wa s statistically significant for Z100: for this material, the microhardness after expiration was significantly lower than before the expiration date.