Trolox equivalent antioxidant capacity of Coffea arabica L. seeds

ABSTRACT The causes of the low desiccation tolerance and low longevity of coffee seeds have not yet been fully elucidated, and a full understanding of their complex physiology is of great interest. Among several alternatives, the loss of antioxidant capacity in seeds may be related to their rapid loss in quality during storage. The objective of this study was to determine the total antioxidant capacity of coffee harvested at different ripeness stages before and after the storage of seeds with different water contents and to relate antioxidant capacity to physiological quality. Seeds in the greenish-yellow or cherry stages, recently harvested or stored for nine months at 10 °C with 40, 30, 20 and 12% water content (wet basis - wb), were submitted to physiological and biochemical quality evaluations, and the Trolox equivalent antioxidant capacity (TEAC) was determined. The germination and root protrusion of coffee seeds from greenish-yellow and cherry fruits were not affected by drying, but seeds harvested at physiological maturity had greater vigor when the moisture content was lower. The quality of coffee seeds decreased during storage, and this decrease was greater in seeds stored with higher water contents. Coffee seeds in the greenish-yellow stage had a higher antioxidant capacity than those in the cherry stage when recently harvested, but there was a substantial reduction in this capacity during storage at both maturation stages. Coffee seed deterioration is related to a reduction in antioxidant capacity, and the isoenzymatic profiles of the antioxidant process are little affected by the seed maturation stage. The deterioration of coffee seeds during storage is related to a reduction in their total antioxidant capacity, regardless of their maturation stage, being more pronounced in the greenish-yellow stage.

Saved in:
Bibliographic Details
Main Authors: Ferreira,Iara Alves, Fávaris,Nathália Aparecida Bragança, Rosa,Sttela Dellyzete Veiga Franco da, Coelho,Stefânia Vilas Boas, Ricaldoni,Marcela Andreotti, Costa,Marina Chagas
Format: Digital revista
Language:English
Published: Editora da UFLA 2022
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542022000100213
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT The causes of the low desiccation tolerance and low longevity of coffee seeds have not yet been fully elucidated, and a full understanding of their complex physiology is of great interest. Among several alternatives, the loss of antioxidant capacity in seeds may be related to their rapid loss in quality during storage. The objective of this study was to determine the total antioxidant capacity of coffee harvested at different ripeness stages before and after the storage of seeds with different water contents and to relate antioxidant capacity to physiological quality. Seeds in the greenish-yellow or cherry stages, recently harvested or stored for nine months at 10 °C with 40, 30, 20 and 12% water content (wet basis - wb), were submitted to physiological and biochemical quality evaluations, and the Trolox equivalent antioxidant capacity (TEAC) was determined. The germination and root protrusion of coffee seeds from greenish-yellow and cherry fruits were not affected by drying, but seeds harvested at physiological maturity had greater vigor when the moisture content was lower. The quality of coffee seeds decreased during storage, and this decrease was greater in seeds stored with higher water contents. Coffee seeds in the greenish-yellow stage had a higher antioxidant capacity than those in the cherry stage when recently harvested, but there was a substantial reduction in this capacity during storage at both maturation stages. Coffee seed deterioration is related to a reduction in antioxidant capacity, and the isoenzymatic profiles of the antioxidant process are little affected by the seed maturation stage. The deterioration of coffee seeds during storage is related to a reduction in their total antioxidant capacity, regardless of their maturation stage, being more pronounced in the greenish-yellow stage.