Synthesis and characterization of a polymeric magnetic hybrid material composed of iron oxide nanoparticles and polyvinyl butyral

Abstract A Polymeric Magnetic Hybrid Material (PMHM), consisting of iron-oxide nanoparticles synthesized in-situ in a Polymer Matrix of Polyvinyl Butyral (PVB), was developed in two stages. First, a precursor film hybrid material (Fe(II)-PVB) was obtained. In the second stage, Fe(II)-PVB was treated with H2O2 under alkaline conditions to obtain the PMHM. Characterization by XRD shows that the crystalline structure of iron oxide into PMHM corresponds to goethite, and to maghemite or magnetite phases. FTIR-spectroscopy reveal that the PVB-matrix preserves its chemical structure into the PMHM. HRTEM-images show that iron oxide nanoparticles (~5 nm) with sphere-like morphology are embedded into PVB-matrix; and diagrams of magnetization versus temperature, show that embedded nanoparticles have a superparamagnetic-like behavior. Finally, magnetorheological results show that mechanical properties of PMHM can be modified under the application of an external magnetic field, showing that it is a good alternative to carry out functions as actuator or sensor in electronic or mechatronic devices.

Saved in:
Bibliographic Details
Main Authors: Reyes-Melo,Martín Edgar, Puente-Córdova,Jesús Gabino, López-Walle,Beatriz, Torres-Castro,Alejandro, García-Loera,Antonio Francisco
Format: Digital revista
Language:English
Published: Universidad Nacional Autónoma de México, Facultad de Ingeniería 2018
Online Access:http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-77432018000100113
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract A Polymeric Magnetic Hybrid Material (PMHM), consisting of iron-oxide nanoparticles synthesized in-situ in a Polymer Matrix of Polyvinyl Butyral (PVB), was developed in two stages. First, a precursor film hybrid material (Fe(II)-PVB) was obtained. In the second stage, Fe(II)-PVB was treated with H2O2 under alkaline conditions to obtain the PMHM. Characterization by XRD shows that the crystalline structure of iron oxide into PMHM corresponds to goethite, and to maghemite or magnetite phases. FTIR-spectroscopy reveal that the PVB-matrix preserves its chemical structure into the PMHM. HRTEM-images show that iron oxide nanoparticles (~5 nm) with sphere-like morphology are embedded into PVB-matrix; and diagrams of magnetization versus temperature, show that embedded nanoparticles have a superparamagnetic-like behavior. Finally, magnetorheological results show that mechanical properties of PMHM can be modified under the application of an external magnetic field, showing that it is a good alternative to carry out functions as actuator or sensor in electronic or mechatronic devices.