Mining Purchase Intent in Twitter

Abstract Most social media platforms allow users to freely express their beliefs, opinions, thoughts, and intents. Twitter is one of the most popular social media platforms where users' post their intent to purchase. A purchase intent can be defined as measurement of the probability that a consumer will purchase a product or service in future. Identification of purchase intent in Twitter sphere is of utmost interest as it is one of the most long-standing and widely used measures in marketing research. In this paper, we present a supervised learning strategy to identify users' purchase intent from the language they use in Twitter. Recurrent Neural Networks (RNNs), in particular with Long Short-Term Memory (LSTM) hidden units, are powerful and increasingly popular models for text classification. They effectively encode sequences with varying length and capture long range dependencies. We present the first study to apply LSTM for purchase intent identification task. We train the LSTM network on semi-automatically created dataset. Our model achieves competent classification accuracy (F1= 83%) over a gold-standard dataset. Further, we demonstrate the efficacy of the LSTM network by comparing its performance with different classical classification algorithms taking this purchase intent identification task into account.

Saved in:
Bibliographic Details
Main Authors: Haque,Rejwanul, Ramadurai,Arvind, Hasanuzzaman,Mohammed, Way,Andy
Format: Digital revista
Language:English
Published: Instituto Politécnico Nacional, Centro de Investigación en Computación 2019
Online Access:http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-55462019000300871
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Most social media platforms allow users to freely express their beliefs, opinions, thoughts, and intents. Twitter is one of the most popular social media platforms where users' post their intent to purchase. A purchase intent can be defined as measurement of the probability that a consumer will purchase a product or service in future. Identification of purchase intent in Twitter sphere is of utmost interest as it is one of the most long-standing and widely used measures in marketing research. In this paper, we present a supervised learning strategy to identify users' purchase intent from the language they use in Twitter. Recurrent Neural Networks (RNNs), in particular with Long Short-Term Memory (LSTM) hidden units, are powerful and increasingly popular models for text classification. They effectively encode sequences with varying length and capture long range dependencies. We present the first study to apply LSTM for purchase intent identification task. We train the LSTM network on semi-automatically created dataset. Our model achieves competent classification accuracy (F1= 83%) over a gold-standard dataset. Further, we demonstrate the efficacy of the LSTM network by comparing its performance with different classical classification algorithms taking this purchase intent identification task into account.