Using BiLSTM in Dependency Parsing for Vietnamese

Abstract: Recently, deep learning methods have achieved good results in dependency parsing for many natural languages. In this paper, we investigate the use of bidirectional long short-term memory network models for both transition-based and graph-based dependency parsing for the Vietnamese language. We also report our contribution in building a Vietnamese dependency treebank whose tagset conforms to the Universal Dependency schema. Various experiments demonstrate the efficiency of this method, which achieves the best parsing accuracy in comparison to other existing approaches on the same corpus, with unlabeled attachment score of 84.45% or labeled attachment score of 78.56%.

Saved in:
Bibliographic Details
Main Authors: Thi,Luong Nguyen, My,Linh Ha, Minh,Huyen Nguyen Thi, Le-Hong,Phuong
Format: Digital revista
Language:English
Published: Instituto Politécnico Nacional, Centro de Investigación en Computación 2018
Online Access:http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-55462018000300853
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract: Recently, deep learning methods have achieved good results in dependency parsing for many natural languages. In this paper, we investigate the use of bidirectional long short-term memory network models for both transition-based and graph-based dependency parsing for the Vietnamese language. We also report our contribution in building a Vietnamese dependency treebank whose tagset conforms to the Universal Dependency schema. Various experiments demonstrate the efficiency of this method, which achieves the best parsing accuracy in comparison to other existing approaches on the same corpus, with unlabeled attachment score of 84.45% or labeled attachment score of 78.56%.