Times of Execution of the Quantum NOT Gate Operating on One of Two Interacting Qubits

It is generally believed that entanglement speeds up Quantum Information Processing (QIP). However, we prove that for a system of two interacting qubits through a XXZ Hamiltonian which are maximally entangled it is not possible to execute a quantum NOT gate operating on one of these two qubits. The interaction between the two qubits means presence of noise in one of them. If the two interacting qubits are not entangled, the times of execution of the quantum NOT gate operating on one of the two qubits are not small enough. Since the times of execution of the quantum NOT gate operating on one of the two interacting qubits is extremely large, we conclude that the execution of the quantum NOT gate operating on one of two interacting qubits is not possible.

Saved in:
Bibliographic Details
Main Authors: Ávila,Manuel, Peñaloza,Laura Alejandra
Format: Digital revista
Language:English
Published: Instituto Politécnico Nacional, Centro de Investigación en Computación 2015
Online Access:http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-55462015000100013
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is generally believed that entanglement speeds up Quantum Information Processing (QIP). However, we prove that for a system of two interacting qubits through a XXZ Hamiltonian which are maximally entangled it is not possible to execute a quantum NOT gate operating on one of these two qubits. The interaction between the two qubits means presence of noise in one of them. If the two interacting qubits are not entangled, the times of execution of the quantum NOT gate operating on one of the two qubits are not small enough. Since the times of execution of the quantum NOT gate operating on one of the two interacting qubits is extremely large, we conclude that the execution of the quantum NOT gate operating on one of two interacting qubits is not possible.