A case study of rabies diagnosis from formalin-fixed brain material

Rabies is caused by several Lyssavirus species, a group of negative sense RNA viruses. Although rabies is preventable, it is often neglected particularly in developing countries in the face of many competing public and veterinary health priorities. Epidemiological information based on laboratory-based surveillance data is critical to adequately strategise control and prevention plans. In this regard the fluorescent antibody test for rabies virus antigen in brain tissues is still considered the basic requirement for laboratory confirmation of animal cases. Occasionally brain tissues from suspected rabid animals are still submitted in formalin, although this has been discouraged for a number of years. Immunohistochemical testing or a modified fluorescent antibody technique can be performed on such samples. However, this method is cumbersome and cannot distinguish between different Lyssavirus species. Owing to RNA degradation in formalin-fixed tissues, conventional RT-PCR methodologies have also been proven to be unreliable. This report is concerned with a rabies case in a domestic dog from an area in South Africa where rabies is not common. Typing of the virus involved was therefore important, but the only available sample was submitted as a formalin-fixed specimen. A real-time RT-PCR method was therefore applied and it was possible to confirm rabies and obtain phylogenetic information that indicated a close relationship between this virus and the canid rabies virus variants from another province (KwaZulu-Natal) in South Africa.

Saved in:
Bibliographic Details
Main Authors: Coertse,J, Nel,L H, Sabeta,C T, Weyer,J, Grobler,A, Walters,J, Markotter,W
Format: Digital revista
Language:English
Published: South African Veterinary Association 2011
Online Access:http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1019-91282011000400013
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rabies is caused by several Lyssavirus species, a group of negative sense RNA viruses. Although rabies is preventable, it is often neglected particularly in developing countries in the face of many competing public and veterinary health priorities. Epidemiological information based on laboratory-based surveillance data is critical to adequately strategise control and prevention plans. In this regard the fluorescent antibody test for rabies virus antigen in brain tissues is still considered the basic requirement for laboratory confirmation of animal cases. Occasionally brain tissues from suspected rabid animals are still submitted in formalin, although this has been discouraged for a number of years. Immunohistochemical testing or a modified fluorescent antibody technique can be performed on such samples. However, this method is cumbersome and cannot distinguish between different Lyssavirus species. Owing to RNA degradation in formalin-fixed tissues, conventional RT-PCR methodologies have also been proven to be unreliable. This report is concerned with a rabies case in a domestic dog from an area in South Africa where rabies is not common. Typing of the virus involved was therefore important, but the only available sample was submitted as a formalin-fixed specimen. A real-time RT-PCR method was therefore applied and it was possible to confirm rabies and obtain phylogenetic information that indicated a close relationship between this virus and the canid rabies virus variants from another province (KwaZulu-Natal) in South Africa.