Relationships between microfibril angle, modulus of elasticity and compressive strength in Eucalyptus wood

Many traits are known to be important in determining the value of Eucalyptus wood as sawn timber. The commercial importance of the microfibril angle (MFA) for wood quality is well established for a range of softwoods, but is less clear for hardwood species. For instance, the relationships of MFA with wood stiffness and compressive strength are unknown in Eucalyptus. Therefore, the aim of this study was to evaluate the correlation between MFA and the modulus of elasticity (Ec0,m) in compression parallel to grain and compressive strength (Fc0,k) using juvenile wood of Eucalyptus grandis from fast-growing plantations. The correlation between wood stiffness and compressive strength was high (0.91). The cellulose microfibril angle presented a correlation of -0.67 with wood stiffness and of -0.52 with compressive strength in Eucalyptus juvenile wood. MFA was found to be important in determining the mechanical behaviour of wood and appears to be a useful parameter to indicate wood stiffness and strength in juvenile Eucalyptus from short-rotation plantations.

Saved in:
Bibliographic Details
Main Authors: Gherardi Hein,Paulo Ricardo, Tarcísio Lima,José
Format: Digital revista
Language:English
Published: Universidad del Bío-Bío 2012
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-221X2012000300002
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many traits are known to be important in determining the value of Eucalyptus wood as sawn timber. The commercial importance of the microfibril angle (MFA) for wood quality is well established for a range of softwoods, but is less clear for hardwood species. For instance, the relationships of MFA with wood stiffness and compressive strength are unknown in Eucalyptus. Therefore, the aim of this study was to evaluate the correlation between MFA and the modulus of elasticity (Ec0,m) in compression parallel to grain and compressive strength (Fc0,k) using juvenile wood of Eucalyptus grandis from fast-growing plantations. The correlation between wood stiffness and compressive strength was high (0.91). The cellulose microfibril angle presented a correlation of -0.67 with wood stiffness and of -0.52 with compressive strength in Eucalyptus juvenile wood. MFA was found to be important in determining the mechanical behaviour of wood and appears to be a useful parameter to indicate wood stiffness and strength in juvenile Eucalyptus from short-rotation plantations.