PHOTOCHEMICAL DEPOSITION OF Pd-LOADED AND Pt-LOADED TIN OXIDE THIN FILMS

Pd and Pt loaded tin OXide thin films have been successfully prepared by direct UV irradiation of amorphous films of ß-diketonate complexes on Si(100) substrates. Tin OXide films loaded with 10, 30 and 50% Pd and Pt, were characterized by Auger electron spectroscopy (AES). The Auger peak intensity ratios of O KL23L23 to Sn M4N45N45 showed that as-deposited films consist of mixed tin OXide phases whereas annealed films consist mainly of single phase SnO2. The results showed that the stoichiometry of the resulting films is in relative agreement with the composition of the precursor films. The surface characterization of these thin films was performed using Atomic Force Microscopy (AFM). This analysis revealed that loaded tin OXide films have a much rougher surface than unloaded films, with rms roughness values ranging from 28-54 nm for as-deposited Pd-SnO X films to 3.6-20 nm for as-deposited Pt-SnO X films. It was also found that Pt-loaded tin OXide films present a better particle size distribution and uniformity when compared to Pd-loaded tin OXide films. These results demonstrate the potential use of these deposited films in the manufacture of gas-sensing devices

Saved in:
Bibliographic Details
Main Authors: BUONO-CORE,G.E., CABELLO,G.A., ESPINOZA,H., KLAHN,A.H., TEJOS,M., HILL,R.H.
Format: Digital revista
Language:English
Published: Sociedad Chilena de Química 2006
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072006000300004
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pd and Pt loaded tin OXide thin films have been successfully prepared by direct UV irradiation of amorphous films of ß-diketonate complexes on Si(100) substrates. Tin OXide films loaded with 10, 30 and 50% Pd and Pt, were characterized by Auger electron spectroscopy (AES). The Auger peak intensity ratios of O KL23L23 to Sn M4N45N45 showed that as-deposited films consist of mixed tin OXide phases whereas annealed films consist mainly of single phase SnO2. The results showed that the stoichiometry of the resulting films is in relative agreement with the composition of the precursor films. The surface characterization of these thin films was performed using Atomic Force Microscopy (AFM). This analysis revealed that loaded tin OXide films have a much rougher surface than unloaded films, with rms roughness values ranging from 28-54 nm for as-deposited Pd-SnO X films to 3.6-20 nm for as-deposited Pt-SnO X films. It was also found that Pt-loaded tin OXide films present a better particle size distribution and uniformity when compared to Pd-loaded tin OXide films. These results demonstrate the potential use of these deposited films in the manufacture of gas-sensing devices