Study for the incorporation of wood ash in soil-cement brick
Abstract This study aimed to produce soil-cement brick with wood ash incorporation coming from the textile industry. The wood ash was a partial substitute for soil and cement in the manufacture of bricks. 7 formulations were made with different proportions of substitution: 10%, 20%, and 30%. It was noticed that the substitution of cement by wood ash in 10% resulted in brick with enhanced properties, showing a 20% increase for compressive strength and a reduction of 44% for mass loss, thus, with higher durability and a reduction of water absorption of 3%, when comparing to the reference brick (soil-cement). It was shown that the reuse of wood ash in the production of soil-cement bricks is a viable and sustainable option, as it is an alternative for the destination of the waste and a reduction in the consumption of Portland cement, which generates a high volume of carbon dioxide (CO2) during its production.
Main Authors: | , , , , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Associação Brasileira de Cerâmica
2022
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0366-69132022000100038 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract This study aimed to produce soil-cement brick with wood ash incorporation coming from the textile industry. The wood ash was a partial substitute for soil and cement in the manufacture of bricks. 7 formulations were made with different proportions of substitution: 10%, 20%, and 30%. It was noticed that the substitution of cement by wood ash in 10% resulted in brick with enhanced properties, showing a 20% increase for compressive strength and a reduction of 44% for mass loss, thus, with higher durability and a reduction of water absorption of 3%, when comparing to the reference brick (soil-cement). It was shown that the reuse of wood ash in the production of soil-cement bricks is a viable and sustainable option, as it is an alternative for the destination of the waste and a reduction in the consumption of Portland cement, which generates a high volume of carbon dioxide (CO2) during its production. |
---|