The effect of microstructural features on the mechanical properties of LZSA glass-ceramic matrix composites
This work reports on the characterization of ZrSiO4 particulate-reinforced Li2O-ZrO2-SiO2-Al2O3 (LZSA) glass-ceramic matrix composites. The typical physical/mechanical and chemical properties of the glass batches and the composites were measured. A composition with 60 wt.% ZrSiO4 was preliminarily selected because it demonstrated the highest values of bending strength (190 MPa) and deep abrasion resistance (51 mm³). To this same composition was given a 7 wt.% bentonite addition in order to obtain plasticity behavior suitable for extrusion. The sintered samples (1150 ºC for 10 min) presented a thermal linear shrinkage of 14% and bending strength values of 220 MPa.
Main Authors: | , , , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Associação Brasileira de Cerâmica
2013
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0366-69132013000300002 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work reports on the characterization of ZrSiO4 particulate-reinforced Li2O-ZrO2-SiO2-Al2O3 (LZSA) glass-ceramic matrix composites. The typical physical/mechanical and chemical properties of the glass batches and the composites were measured. A composition with 60 wt.% ZrSiO4 was preliminarily selected because it demonstrated the highest values of bending strength (190 MPa) and deep abrasion resistance (51 mm³). To this same composition was given a 7 wt.% bentonite addition in order to obtain plasticity behavior suitable for extrusion. The sintered samples (1150 ºC for 10 min) presented a thermal linear shrinkage of 14% and bending strength values of 220 MPa. |
---|