MEASUREMENTS AND THERMODYNAMIC MODELING OF VAPOR-LIQUID EQUILIBRIA FOR BINARY SYSTEMS OF ISOPROPYL CHLOROACETATE WITH CYCLOHEXANE, ISOPROPANOL AND BENZENE AT 101.3 kPa

Abstract In this work, the vapor-liquid equilibrium experimental data for the systems of isopropyl chloroacetate + isopropanol, isopropyl chloroacetate + cyclohexane and isopropyl chloroacetate + benzene were measured by a modified Rose-type recirculating still under the pressure of 101.3 kPa. The thermodynamic consistency of the measured data was verified by the Herington and van Ness methods, respectively. The experimental data were correlated by the NRTL, Wilson, and UNIQUAC activity coefficient models, and the corresponding interaction parameters of the three models were obtained. The root-mean-square deviations between the experimental data and calculated results for the temperature and the mole fraction of the vapor phase were less than 0.58 K and 0.0066, respectively. In addition, the excess Gibbs energy was calculated for the three systems.

Saved in:
Bibliographic Details
Main Authors: Xu,Dongmei, Li,Rui, Zhang,Lianzheng, Ma,Yixin, Gao,Jun, Wang,Yinglong
Format: Digital revista
Language:English
Published: Brazilian Society of Chemical Engineering 2019
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000401717
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract In this work, the vapor-liquid equilibrium experimental data for the systems of isopropyl chloroacetate + isopropanol, isopropyl chloroacetate + cyclohexane and isopropyl chloroacetate + benzene were measured by a modified Rose-type recirculating still under the pressure of 101.3 kPa. The thermodynamic consistency of the measured data was verified by the Herington and van Ness methods, respectively. The experimental data were correlated by the NRTL, Wilson, and UNIQUAC activity coefficient models, and the corresponding interaction parameters of the three models were obtained. The root-mean-square deviations between the experimental data and calculated results for the temperature and the mole fraction of the vapor phase were less than 0.58 K and 0.0066, respectively. In addition, the excess Gibbs energy was calculated for the three systems.