Computer aided polymer design using multi-scale modelling

The ability to predict the key physical and chemical properties of polymeric materials from their repeat-unit structure and chain-length architecture prior to synthesis is of great value for the design of polymer-based chemical products, with new functionalities and improved performance. Computer aided molecular design (CAMD) methods can expedite the design process by establishing input-output relations between the type and number of functional groups in a polymer repeat unit and the desired macroscopic properties. A multi-scale model-based approach that combines a CAMD technique based on group contribution plus models for predicting polymer repeat unit properties with atomistic simulations for providing first-principles arrangements of the repeat units and for predictions of physical properties of the chosen candidate polymer structures, has been developed and tested for design of polymers with desired properties. A case study is used to highlight the main features of this multi-scale model-based approach for the design of a polymer-based product.

Saved in:
Bibliographic Details
Main Authors: Satyanarayana,K. C., Abildskov,J., Gani,R., Tsolou,G., Mavrantzas,V. G.
Format: Digital revista
Language:English
Published: Brazilian Society of Chemical Engineering 2010
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322010000300002
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ability to predict the key physical and chemical properties of polymeric materials from their repeat-unit structure and chain-length architecture prior to synthesis is of great value for the design of polymer-based chemical products, with new functionalities and improved performance. Computer aided molecular design (CAMD) methods can expedite the design process by establishing input-output relations between the type and number of functional groups in a polymer repeat unit and the desired macroscopic properties. A multi-scale model-based approach that combines a CAMD technique based on group contribution plus models for predicting polymer repeat unit properties with atomistic simulations for providing first-principles arrangements of the repeat units and for predictions of physical properties of the chosen candidate polymer structures, has been developed and tested for design of polymers with desired properties. A case study is used to highlight the main features of this multi-scale model-based approach for the design of a polymer-based product.