Mathematical modeling of capsular polysaccharide production by Neisseria meningitidis serogroup C in bioreactors
In this work, the process of capsular polysaccharide production by Neisseria meningitidis serogroup C was studied. Batch experimental runs were conducted in a set of one-liter bioreactors with 0.5 L of Frantz cultivation medium. Cultivation temperature and pH were controlled at optimal pre-established values. The dynamic behavior of the bacteria was analyzed based on biomass growth, glucose uptake, polysaccharide production and dissolved oxygen time profile obtained in a set of experimental runs with initial concentrations of glucose that varied from 5 to 13.5 g/L. Formulated hypotheses were then employed in the construction of a phenomenological model of the bioprocess under study that successfully described the dynamic behavior of the system and can be used in future control and optimization of the industrial process of capsular polysaccharide production.
Main Authors: | , , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Brazilian Society of Chemical Engineering
2005
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322005000400011 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, the process of capsular polysaccharide production by Neisseria meningitidis serogroup C was studied. Batch experimental runs were conducted in a set of one-liter bioreactors with 0.5 L of Frantz cultivation medium. Cultivation temperature and pH were controlled at optimal pre-established values. The dynamic behavior of the bacteria was analyzed based on biomass growth, glucose uptake, polysaccharide production and dissolved oxygen time profile obtained in a set of experimental runs with initial concentrations of glucose that varied from 5 to 13.5 g/L. Formulated hypotheses were then employed in the construction of a phenomenological model of the bioprocess under study that successfully described the dynamic behavior of the system and can be used in future control and optimization of the industrial process of capsular polysaccharide production. |
---|