Phase equilibria of binary mixtures by molecular simulation and cubic equations of state

Molecular simulation data were used to study the performance of equations of state (EoS) and combining rules usually employed in thermodynamic property calculations. The Monte Carlo method and the Gibbs ensemble technique were used for determining composition and densities of vapor and liquid phases in equilibrium for binary mixtures of Lennard-Jones fluids. Simulation results are compared to data in the literature and to those calculated by the t-PR-LJ EoS. The use of adequate combining rules has been shown to be very important for the satisfactory representation of molecular simulation data.

Saved in:
Bibliographic Details
Main Authors: Cabral,V.F., Pinto,R.R.C., Tavares,F.W., Castier,M.
Format: Digital revista
Language:English
Published: Brazilian Society of Chemical Engineering 2001
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322001000200003
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Molecular simulation data were used to study the performance of equations of state (EoS) and combining rules usually employed in thermodynamic property calculations. The Monte Carlo method and the Gibbs ensemble technique were used for determining composition and densities of vapor and liquid phases in equilibrium for binary mixtures of Lennard-Jones fluids. Simulation results are compared to data in the literature and to those calculated by the t-PR-LJ EoS. The use of adequate combining rules has been shown to be very important for the satisfactory representation of molecular simulation data.