Aplicação da relaxação lagrangeana e do algoritmo genético construtivo na solução do problema probabilístico de localização-alocação de máxima cobertura
O problema de localização de máxima cobertura (MCLP) procura localizar facilidades visando a maximizar a população atendida, considerando uma dada distância ou tempo padrão de serviço. Várias extensões desse modelo têm sido propostas para aumentar a sua aplicabilidade. Entre elas, existem modelos probabilísticos para localização-alocação de máxima cobertura com restrições no tempo de espera ou no comprimento da fila para sistemas congestionados, que levam em conta um ou vários servidores por facilidade. A proposta deste trabalho é a de resolver um modelo para um servidor por facilidade por meio da relaxação lagrangeana e do Algoritmo Genético Construtivo. Os resultados dos testes obtidos nessas abordagens são apresentados e comparados.
Main Authors: | , |
---|---|
Format: | Digital revista |
Language: | Portuguese |
Published: |
Universidade Federal de São Carlos
2006
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-530X2006000200006 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | O problema de localização de máxima cobertura (MCLP) procura localizar facilidades visando a maximizar a população atendida, considerando uma dada distância ou tempo padrão de serviço. Várias extensões desse modelo têm sido propostas para aumentar a sua aplicabilidade. Entre elas, existem modelos probabilísticos para localização-alocação de máxima cobertura com restrições no tempo de espera ou no comprimento da fila para sistemas congestionados, que levam em conta um ou vários servidores por facilidade. A proposta deste trabalho é a de resolver um modelo para um servidor por facilidade por meio da relaxação lagrangeana e do Algoritmo Genético Construtivo. Os resultados dos testes obtidos nessas abordagens são apresentados e comparados. |
---|