ABS/Recycled PCTG blend compatibilized with SBS: effect on mechanical properties and morphology

Abstract The reuse of plastic polymers is one of the ways to reduce the negative environmental impact caused by these products. This work presents a study of mechanical and morphological properties of ABS and PCTG residue blend using SBS as compatibilizing agent to make copolyester recycling process feasible. It was observed that the incorporation of SBS in the mixture decreased the stiffness and increased the impact resistance compared to the results obtained in the non-compatible mixture, indicating that the SBS acted as a toughening agent in the mixture. Additionally, according to the results obtained by DSC and SEM, the blends obtained can be considered partially miscible, since two glass transition temperatures were evidenced shifted by a few degrees from neat components. Micrograph suggests that there are SBS small domain inclusions dispersed in the PCTG matrix and partial compatibility occurred by partial interaction of the SBS in the interface.

Saved in:
Bibliographic Details
Main Authors: Molari,Juliana Augusto, Brunelli,Deborah Dibbern
Format: Digital revista
Language:English
Published: Associação Brasileira de Polímeros 2021
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282021000300408
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The reuse of plastic polymers is one of the ways to reduce the negative environmental impact caused by these products. This work presents a study of mechanical and morphological properties of ABS and PCTG residue blend using SBS as compatibilizing agent to make copolyester recycling process feasible. It was observed that the incorporation of SBS in the mixture decreased the stiffness and increased the impact resistance compared to the results obtained in the non-compatible mixture, indicating that the SBS acted as a toughening agent in the mixture. Additionally, according to the results obtained by DSC and SEM, the blends obtained can be considered partially miscible, since two glass transition temperatures were evidenced shifted by a few degrees from neat components. Micrograph suggests that there are SBS small domain inclusions dispersed in the PCTG matrix and partial compatibility occurred by partial interaction of the SBS in the interface.