Silicon adsorption in single walled nanotubes

Using density functional (DF) calculations and Monte Carlo (MC) simulations we have investigated the main electronic and structural properties of silicon interacting with single walled carbon nanotubes. We have investigated the silicon adsorption externally and internally in the nanotubes surface. The total energies calculations and charge density plot present that the adsorption is most stable externally with silicon forming four bonds with the C atoms and the Si-C bond distances are similar to the ones in the SiC crystal. When silicon is adsorbed in a semiconductor nanotube, a new occupied electronic level inside the band gap is observed. For the metallic tube, the electronic silicon levels are close to the Fermi energy, increasing the metallic tube character.

Saved in:
Bibliographic Details
Main Authors: Colussi,M. L., Neves,L.P., Baierle,R.J.
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Física 2006
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000600023
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using density functional (DF) calculations and Monte Carlo (MC) simulations we have investigated the main electronic and structural properties of silicon interacting with single walled carbon nanotubes. We have investigated the silicon adsorption externally and internally in the nanotubes surface. The total energies calculations and charge density plot present that the adsorption is most stable externally with silicon forming four bonds with the C atoms and the Si-C bond distances are similar to the ones in the SiC crystal. When silicon is adsorbed in a semiconductor nanotube, a new occupied electronic level inside the band gap is observed. For the metallic tube, the electronic silicon levels are close to the Fermi energy, increasing the metallic tube character.