A theoretical study of acrylonitrile adsorption on Si(001)

The present work is a comparative study of possible adsorption structures of the conjugated molecule acrylonitrile on Si(001) employing the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory. In the recent literature it is proposed the interaction of acrylonitrile with Si(001) through a cycloaddition reaction of the cyano group, in competition with the bounding of the two outer atoms of the molecule skeleton with the Si dimer in cross-dimer and cross-trench geometries; between other geometries like which correspond the reaction of the C = C bond with a Si dimer. Starting from a large number of configurations our calculations favor the planar cycloaddition through the terminal N and C atoms on the Si dimer. In this way we explain the electronic and vibrational features obtained experimentally.

Saved in:
Bibliographic Details
Main Authors: León-Pérez,F. de, Miotto,R., Ferraz,A. C.
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Física 2004
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332004000400052
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present work is a comparative study of possible adsorption structures of the conjugated molecule acrylonitrile on Si(001) employing the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory. In the recent literature it is proposed the interaction of acrylonitrile with Si(001) through a cycloaddition reaction of the cyano group, in competition with the bounding of the two outer atoms of the molecule skeleton with the Si dimer in cross-dimer and cross-trench geometries; between other geometries like which correspond the reaction of the C = C bond with a Si dimer. Starting from a large number of configurations our calculations favor the planar cycloaddition through the terminal N and C atoms on the Si dimer. In this way we explain the electronic and vibrational features obtained experimentally.