CH3CN on Si(001): adsorption geometries and electronic structure

In this work we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of acetonitrile on the silicon surface. Our first-principles calculations indicate that CH3CN adsorbs via a [2+2] cycloaddition reaction through the C<FONT FACE=Symbol>º</FONT>N group with an adsorption energy around 35 kcal/mol, close to the 30 kcal/mol estimated by Tao and co-workers. The electronic structure and the surface states calculated for the adsorbed system are also discussed.

Saved in:
Bibliographic Details
Main Authors: Miotto,R., Oliveira,M. C., Pinto,M. M., León-Pérez,F. de, Ferraz,A. C.
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Física 2004
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332004000400045
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of acetonitrile on the silicon surface. Our first-principles calculations indicate that CH3CN adsorbs via a [2+2] cycloaddition reaction through the C<FONT FACE=Symbol>º</FONT>N group with an adsorption energy around 35 kcal/mol, close to the 30 kcal/mol estimated by Tao and co-workers. The electronic structure and the surface states calculated for the adsorbed system are also discussed.