STM images and energetics of the bi-covered (Ö3 × Ö3) reconstructed Si(111) surface
Bi-covered (<FONT FACE=Symbol>Ö</font>3× <FONT FACE=Symbol>Ö</font>3) reconstructed Si(111) surface has been studied by first principles calculations. Three different Bi coverages have been considered: 1 monolayer (ML), 1/3 ML and 2/3 ML, leading to the milkstool, T4 and the honeycomb structural models, respectively. Our total energy calculations show that the milkstool model is the energetically most stable structure for high Bi coverages followed by the T4 model for low Bi coverages, without going through a stable structure for the honeycomb model. We performed theoretical STM simulations for the three structures. For 1 ML coverage we observe the formation of Bi-trimers for occupied states, and a honeycomb image for empty states. It is suggested that the experimentally obtained STM image of a honeycomb structure does not correspond to a Bi-coverage of 2/3 ML, but it could represent a STM image of empty states localized in the T4 sites aside the Bi-trimers of the milkstool model.
Main Authors: | , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Sociedade Brasileira de Física
2004
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332004000400025 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bi-covered (<FONT FACE=Symbol>Ö</font>3× <FONT FACE=Symbol>Ö</font>3) reconstructed Si(111) surface has been studied by first principles calculations. Three different Bi coverages have been considered: 1 monolayer (ML), 1/3 ML and 2/3 ML, leading to the milkstool, T4 and the honeycomb structural models, respectively. Our total energy calculations show that the milkstool model is the energetically most stable structure for high Bi coverages followed by the T4 model for low Bi coverages, without going through a stable structure for the honeycomb model. We performed theoretical STM simulations for the three structures. For 1 ML coverage we observe the formation of Bi-trimers for occupied states, and a honeycomb image for empty states. It is suggested that the experimentally obtained STM image of a honeycomb structure does not correspond to a Bi-coverage of 2/3 ML, but it could represent a STM image of empty states localized in the T4 sites aside the Bi-trimers of the milkstool model. |
---|